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Abstract
Energy intake of individuals affects growth of organisms and, therefore, populations.
Persistent lipophilic toxicants acquired with the energy can bioaccumulate
and harm individuals. Marine mammals are particularly vulnerable because of their
large energy requirements, and transfer of energy and toxicants from mothers to their
young during gestation and lactation. Dynamic energy budget (DEB) models for energy
assimilation and utilization, coupled with pharmacokinetic models that calculate
distribution of toxicants in individuals, can help investigate the vulnerability.

In this dissertation I develop the first individual DEB model tailored specifically
to marine mammals and couple it to a pharmacokinetic model for lipophilic toxicants.
I adapt the individual model to the right whale and use it to analyze consequences of
energy availability on individual growth, reproduction, bioaccumulation, and transfer
of toxicants between generations.

From the coupled model, I create an individual-based model (IBM) of a marine
mammal population. I use it to investigate how interactions of food availability,
exposure to toxicants, and maternal transfer of toxicants affect populations. I also
present a method to create matrix population models from a general DEB model to
alleviate some of the drawbacks of the IBM approach.

Thesis Supervisor: Hal Caswell
Title: Senior Scientist, WHOI

Thesis Supervisor: Michael G. Neubert
Title: Associate Scientist, WHOI
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Chapter 1

Introduction

It isn't pollution that's harming the environment.

It's the impurities in our air and water that are doing it.

(Unknown)

Marine mammals are awe-inspiring creatures. Many whales traverse the oceans,

and blue whales (Balaenoptera musculus) are the largest creatures on the planet.

They communicate across tens, possibly hundreds of miles (Dudzinski et al. 2002),

hold their breath for hours, dive to depths of more than 2000m (Stewart 2002),

coordinate their behavior, and socialize (Tyack 2002). As many other wild species,

they are threatened by human influence: humans compete with them for food and

space, hunt them, and pollute their environment. As early as 1972, the US Congress

concluded that "certain species and population stocks of marine mammals are, or

may be, in danger of extinction or depletion as a result of man's activities", and that

"such species and population stocks should not be permitted to diminish beyond the

point at which they cease to be a significant functioning element in the ecosystem

of which they are a part" (Marine Mammal Protection Act 1972). Understanding

marine mammal population dynamics and how it is affected by human interaction is

crucial to that goal.
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Since 1925 (Lotka 1925, Volterra 1926), mathematical models have been gaining

in popularity as a tool to investigate population dynamics; today, they are widely

accepted and utilized. Every mathematical model of a population has to span scales

of biological integration by connecting processes of individual growth, reproduction

and mortality to population dynamics. The environment and interactions with other

species affect these processes and, consequently, population dynamics.

The most prominent environmental factors affecting individual growth, reproduc-

tion and mortality include food availability and toxicants. Available food, and the

resulting energy intake profoundly affect growth and reproduction. Since toxicants

are often bound to the food, the two are - more often than not - intimately connected:

energy intake governs toxicant intake, and exposure to toxicants influences individ-

ual's mortality, foraging ability and energy utilization (Muller and Nisbet 1997).

To account for these factors, we need to further link scales of biological integration

- from biomolecular, to individual, to population-level. Models linking these can be

complex and difficult to compute. Pharmacokinetic and energy budget models are

widely used to connect biomolecular to individual scales.

Pharmacokinetic models calculate dynamics of a material substance throughout

the body of an individual from the exposure of the individual to the substance. The

body of the individual may be partitioned into groups of organs and fluids, which then

constitute compartments of the pharmacokinetic model. Depending on the compart-

ment, the substance can be assimilated, stored, transformed, and/or excreted on

different temporal scales. For example, Hickie et al. (1999) present a pharmacokinetic

model for marine mammals in which each of the five compartments operates on a

different time scale and blood connects them all.

The results of a pharmacokinetic model include distribution of the modeled sub-

stance through compartments and the rate of exchange of the substance between

compartments as a function of exposure. This distribution can be translated into

effects on the individual using a separate model. If the substance is a toxicant, such
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model is called a toxicant action model.

Pharmacokinetic models usually model one substance. Although an individual

is rarely exposed to only one toxicant, tracking one toxicant and its effects on the

individual can teach us a great deal about possible patterns of distribution through

compartments and effects of other toxicants. This is why pharmacokinetic models are

extensively used in medicine to determine proper drug dosage (e.g. Levin et al 1982,

Nestorov 2003 (review)) and ecology to determine effects of exposure to toxicants (e.g.

Hallam 1989, Moreno et al. 1992, Emond et al. 2005). To track even one toxicant, we

need to know the exposure of the individual (toxicant intake). If the toxicant intake

and distribution throughout the body depends on energy intake and utilization, we

need to understand fluxes of energy within an individual as well.

Energy budget models help calculate the acquisition and utilization of energy for

maintenance, growth and reproduction of an individual. They come in a variety of

forms; each form constrains the kinds of interaction between the environment and the

organism that one can investigate. In general, energy budget models can be classified

as either supply- or demand-side models.

In demand-side models individuals always acquire enough energy to satisfy all their

energy needs (e.g. von Bertalanffy 1957, Hickie et al. 2000). This is a useful way

of estimating toxicant intake for individuals in constant environments, or individuals

that are saturated with food. However, most organisms experience variable envi-

ronments with periods of food scarcity as well as times of surplus, and the growth of

many individuals - and populations - is regulated at least in part by food availability.

Therefore, demand-side energy budget models cannot yield predictions of population

growth as a function of food availability, nor help investigate the interaction of food

availability and toxicants.

In supply-side energy budget models, growth and reproduction depend on the

available energy. Similar to the pharmacokinetic models, a supply-side model parti-

tions the body of an individual into compartments. These compartments can typically

15



be classified as either energy reserve or structure compartments; depending on the

purpose of the model, there can be multiple instances of both. Energy reserve com-

partments act as depositories of energy: an individual can store the energy in them

when the energy acquisition is greater than the energy demand, and utilize energy

from them when needed. Structure compartments are sinks of energy: the individual

either needs to invest energy into them to increase in size, or spend energy to maintain

them and stay alive.

Supply-side energy budget models have been pioneered by S.A.L.M. Kooijman in

the early 1980s (Kooijman 1986) using Daphnia as the model organism, and developed

into a dynamic energy budget (DEB) theory spanning biological scales of integration

from biomolecular to population-level, applicable to multiple species. The theory has

been developed (Gurney et al. 1990, Hallam et al. 1990, McCauley et al. 1990,

Ross and Nisbet 1990) and tested (Noonburg et al. 1998, Nisbet et al. 2000, Nisbet

et al. 2004) using mostly Daphnia as the model species, but it can nevertheless

explain reproduction of organisms as different as birds and zooplankton using the

same principles, and can reproduce the results of demand-side models as special cases

of the DEB models (Kooijman 2000). Outputs of DEB models - energy utilization in

each of the compartments and the transfer of energy between them can be readily

used as inputs to pharmacokinetic models to investigate the interactions between

energy and toxicant intake (e.g. Kooijman and van Haren 1990, Nisbet et al. 1996,

Muller and Nisbet 1997).

Despite their versatility, DEB models could not account for the distinctive require-

ments of marine mammal reproduction and pharmacokinetics because of their fairly

rigid form and the way they separate energy for reproduction from energy reserves.

In traditional DEB models, energy committed to reproduction is a constant fraction

of the flux of energy from the energy reserves. In environments with constant food,

this flux depends on the size of the organism only, not the requirements of repro-

duction. Therefore, the flux from the energy reserves to reproduction cannot change
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during a reproductive event, and the reproductive success depends on the energy set

aside for reproduction regardless of the energy available in the reserves. Also, once

the reproduction starts, the energy committed to reproduction cannot be utilized for

survival by the mother.

Marine mammals, on the other hand, invest energy for reproduction from their

energy reserves and often depend on energy intake for successful reproduction. This

investment is made only during the reproductive event (pregnancy or nursing), but

is substantial, prolonged, and usually significantly depletes the mother's own energy

reserves. During reproduction, mother's commitment of energy is a function of the

needs of the young. Nevertheless, she can stop the reproduction even during preg-

nancy (Pitcher at al. 1998), and utilize the unused portion of the energy for survival.

Therefore, a marine mammal DEB model should not separate energy for reproduc-

tion from mother's energy reserves, and it has to allow a variable energy flux from

the reserves to reproduction.

Marine mammals store the bulk of their energy as lipids and transfer large amounts

of energy to their young. This puts them at risk from lipophilic toxicants (toxicants

that associate preferentially with lipids) such as polychlorinated biphenyls (PCBs).

Such toxicants can be hard to biotransform or excrete, and can therefore bioaccu-

mulate and have short term (acute) and long-term (chronic) negative effects on in-

dividuals. Maternal transfer of lipids and lipid-bound toxicants between generations

increases the potential for negative effects (Aguilar and Borrell 1994, Hickie et al.

2000, Guo et al. 2004). Processes affecting the negative effects of toxicants span mul-

tiple temporal scales: from short-term distribution of energy between various tissues

affecting acute exposure, to time-scales of individual growth and reproduction affect-

ing bioaccumulation, to multi-generational time scales of maternal transfer affecting

exposure.

Traditional pharmacokinetic models successfully separate short-term and individ-

ual temporal scales, but traditional DEB models cannot separate temporal scales in
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the manner required by the pharmacokinetic models to describe short-term effects of

exposure. The fairly rigid structure of energy flow in traditional DEB models pre-

vents temporal differentiation because it lacks compartments that could account for

time scales shorter than energy reserve dynamics. I added such a compartment, and

created a new DEB model that can be coupled to pharmacokinetic models spanning

the short-term and individual temporal scales.

Marine mammals live long, are relatively few in numbers, and some are in danger

of extinction (e.g. Mediterranean monk seal (Panou et al. 1993), North Atlantic right

whale (Knowlton et al. 1994), and North Pacific right whale (Brownell et al. 2001)).

Therefore, multi-generational experiments on marine mammal are impractical, if not

immoral. Population models can help address long-term and population-level ques-

tions.

This thesis presents a model for an individual marine mammal, and a model for

marine mammal populations. Although tailored to marine mammals, the models are

applicable to any other mammalian species that relies primarily on lipids for energy.

I have created a novel dynamic energy budget model and coupled it to a phar-

macokinetic model to investigate bioaccumulation of toxicants in marine mammals

(Chapter 2), created an individual-based population model to investigate the effects

of this bioaccumulation (Chapter 3), and created a method to link individual energy

budgets to a class of readily manageable demographic models with a rich theoreti-

cal background, matrix population models (Chapter 4). This was, however, only the

start - there are many unanswered questions and many avenues to explore. I outlined

some of these questions and started to explore some of the avenues in Chapter 5.

1.1 Thesis outline

Chapter 1 is the introduction to the thesis. Here I introduce the basic con-

cepts necessary to understand the work presented in the thesis, provide a historical

18



background, and provide an overview of the organization of the thesis.

Chapter 2 introduces the marine mammal energy budget model, and demon-

strates how to couple it with a pharmacokinetic model to explore bioaccumulation

and maternal transfer of toxicants in marine mammals. I apply the model to right

whales.

The resulting model is, to the best of our knowledge, the first dynamic energy

budget model tailored specifically to marine mammals. Unlike the conventional DEB

theory, it does not assume that energy reserves equilibrate with the environment;

rather, this equilibration is the result of the inherent dynamics of the model.

Using the model, we addressed the transfer of toxicants from mother to offspring

and how food availability affects the transfer. The model opens the way to new general

ecophysiological theory, is a potentially powerful tool in marine mammal assessment

and management, and offers a source of quantitative predictions that can be tested

in the field.

The estimate of the parameters in the Appendix of Chapter 2 is interesting in its

own right - parameters are estimated independently whenever possible, sometimes

'borrowed' from other species based on physiological arguments, not fitted so that

the outputs of the model match observations, and yet the model predicts the growth

and reproduction of right whales very well. We also utilized a number of approaches

to estimate the parameters, including careful use of power laws describing inter-

specific variation in rate processes and a novel representation of the morphology of

the right whale. The approach to parameter estimation, as well as the model for the

morphology, may be helpful to those wishing to apply the marine mammal energy

budget model to another species.

Chapter 3 utilizes the individual model to address population-level questions.

I created an individual based population model (IBM) in which every individual is

governed by the individual model from Chapter 2. Using the model, I investigated the
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population growth rate as a function of food availability and exposure to toxicants,

and how modes of maternal transfer affect the patterns. I also investigated how

the mode of maternal transfer influences the patterns of bioaccumulation in response

to sudden changes in environmental toxicant concentration such as may arise from

pollution by new toxicants and their subsequent regulation.

Chapter 4 presents and evaluates a method to create a matrix population model

from an individual dynamic energy budget model. Whereas an IBM is a good tool to

investigate a particular species in a particular food availability and exposure scenario,

using it to investigate a large number of food availabilities and exposure scenarios

is cumbersome and computationally demanding. Investigating a large number of

species, food availabilities and exposure scenarios using the IBM is impractical at

best. The matrix population model is much faster to analyze than the IBM because

demographic statistics can be calculated directly from the projection matrix.

Although I used a simple, general dynamic energy budget model to develop the

method, it is applicable to any energy budget model with the required outputs. Once

created, the matrix population model can be analyzed using all the tools of the matrix

population theory. Furthermore, investigating effects of additional stressors - such

as mortality caused by human interaction - involves commonly practiced and well

understood additions to the model.

I differentiated individuals by size only. This proved to be adequate in constant

or seasonally varying environments, but a more general model is required to account

for annual variability.

In the Appendix C of the Chapter 4, I suggest a generalization of the methods

presented in Chapter 4 to multiple stages and to other state variables of the individual

model, such as energy and toxicants.

Chapter 5 is the conclusion to the thesis. In it I explore the implications of the

thesis and possible uses for the advances made therein.
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Chapter 2

Energetics and toxicant

bioaccumulation: a model for

marine mammals

Work in this chapter has been submitted to Ecological Applications as a manuscript:

Klanjscek, T., R.M. Nisbet, H. Caswell and M.G. Neubert.

Energetics and bioaccumulation: a model for marine mammals.

2.1 Abstract

We present a dynamic energy budget (DEB) model for marine mammals, coupled

with a pharmacokinetic model of a lipophilic persistent toxicant. Inputs to the model

are food availability and lipid-normalized toxicant concentration in the environment.

The model predicts individual growth, reproduction, bioaccumulation, and transfer of

energy and toxicant from mothers to their young. We estimated all model parameters

for the right whale; with these parameters, reduction in food availability increases the

age at first parturition, increases intervals between reproductive events, reduces the

organisms' ability to buffer seasonal fluctuations, and increases their susceptibility to
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temporal shifts in the seasonal peak of food availability. Reduction in energy intake

increases bioaccumulation and the amount of toxicant transferred from mother to

each offspring. With high food availability, the toxicant load of offspring decreases

with birth order. Contrary to expectations, this ordering may be reversed with lower

food availability. Although demonstrated with parameters for the right whale, these

relationships between energy intake and energetics and pharmacokinetics of organisms

are likely to be more general. Results specific to the right whales include energy

assimilation estimates for the North Atlantic and southern right whales, influences of

history of energy availability on reproduction, and a relationship between age at first

parturition and calving intervals. Our model provides a platform for further analyses

of both individual and population responses of marine mammals to pollution, and to

changes in food availability, including those likely to arise through climate change.

2.2 Introduction

Marine mammals use lipids in their blubber as an energy reserve to mitigate fluc-

tuations in food abundance (Iverson, 2002). They accumulate lipids whenever their

energy intake exceeds their expenditures for survival, growth and reproduction. This

accumulation can be significant; the blubber typically constitutes a large fraction of

a marine mammal's body mass (e.g. up to 43% in whales (Lockyer 1976) and 50%

in seals (Iverson, 2002)). Energy from the blubber is utilized when energy needs ex-

ceed energy inputs (e.g. when starving or reproducing); consequently, the amount of

blubber can change significantly from season to season. The rate of change depends

upon an individual's energy budget (Reilly, 1991).

To build up large energy reserves, individuals must consume large amounts of food.

Because toxicants are often bound-up with food, individuals may ingest large amounts

of toxicants as well. Lipophilic and difficult-to-degrade (persistent) toxicants can then

accumulate in the blubber, reaching concentrations orders of magnitude greater than
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are found in the food. For example, Ross et al. (2000) measured concentrations as

high as 200-300pg of total polychlorinated biphenyls (PCBs) per gram lipid in the

blubber of killer whales feeding on other species of marine mammals with typical

concentrations of 5-50pg/g.

Toxicants may have little effect on the individual while sequestered in the blubber

(Joergensen et al. 1999). When an individual uses the energy from the blubber,

however, the toxicants can be released and may increase mortality (de Swart et al.

1994, Ross et al. 1996, Martineau et al. 2002) or decrease fertility (Reijnders 1986,

Schwacke et al. 2002). These, and other, effects may involve the effects of the

mobilized toxicants on an individual's ability to acquire or utilize energy (Muller and

Nisbet 1997).

To complicate matters further, toxicants are transferred from mothers to their

offspring through milk (Aguilar and Borrell 1994, Restum et al. 1998, Hickie et al.

1999, Ross et al. 2000), exposing these offspring to toxicants during a critical period in

their development. The exposure can have adverse impacts, including negative effects

on the immune system (Thomas and Hinsdill 1980) and on cognitive abilities (Guo et

al. 2004). The amount of toxicant transfer depends on the mother's energetic status

and her toxicant burden which, in turn, depend on the environmental conditions

she experienced and the consequential energy acquisition and utilization (including

reproduction).

Energy and toxicant dynamics are thus intimately and intricately connected. In

this paper we report on our efforts to investigate their complex interaction by coupling

a mechanistic energy budget model to a pharmacokinetic model for the dynamics of

the toxicant.

Energy budget models come in a variety of forms. Any particular form constrains

the kinds of interactions between the environment and the organism that one can

investigate. In general, energy budget models can be classified as either supply-

or demand-side models (Klanjscek et al. 2006). In demand-side models individuals
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acquire enough energy to satisfy all their energy needs (e.g. von Bertalanffy 1957,

Hickie et al. 1999). Many previous mammal models (e.g. Porter et al. 2000, 2002

and many references therein) are demand-side models, focusing on adaptations that

allow maximum benefit from the consumed food.

However, most organisms experience variable environments with periods of food

scarcity as well as times of surplus, and the growth of many populations is regulated,

at least in part, by food availability. To handle such variability, one needs a supply-

side energy budget model--a model in which growth and reproduction depend on

the available energy. Gurney et al. (1990), Hallam et al. (1990), McCauley et al.

(1990), Ross and Nisbet (1990), Noonburg et al. (1998), Kooijman (2000), Lika and

Nisbet (2000), Nisbet et al. (2000), and Gurney and Nisbet (2004) have all analyzed

supply-side models. None of these models, however, take into account the distinctive

requirements of mammalian reproduction. Mammals commit energy to reproduction

only during reproductive events (gestation and lactation), which require substantial,

prolonged and uninterrupted investment of energy. This investment and its success,

among other things, depends on the energy intake and energy reserves of the mother.

Here we present a novel energy budget model tailored specifically for marine main-

mals, and couple it to a pharmacokinetic model (related to Boon et al. 1994). We

used the model to investigate the effects of energy availability on bioaccumulation

and vertical transfer of toxicants. We tried to make the model as simple as possible;

nevertheless, it is complex and has many parameters. Rather than analyzing the

model's dynamics for all possible parameter values (a daunting task), we focused on

a parameter set that we estimated for the right whale (Eubalaena spp.).

We chose the right whale for several reasons. First, decreased food availability and

exposure to persistent lipophilic toxicants have been proposed as factors contributing

to the decades-long decline in the North Atlantic right whale population (Knowlton

et al. 1994, Fujiwara and Caswell 2001). In the future, we intend to evaluate the

significance of these factors relative to others (e.g. ship-strikes and inbreeding). Thus
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our individual-level model is also a first step toward an individual-based population-

level model that can be used to inform conservation decisions. Second, the life-history

of the right whale is not so unusual as to limit our results to them in particular. In

fact, we believe that our results are relevant to many marine mammals.

We begin by describing our model in the section Model Description. In the sec-

tion The Right Whale, we shortly introduce distinctive problems in energetics and

toxicology of the right whale. In the Results section, we show how availability and

variability of energy affect an individual's growth, age at first parturition, and the

average calving interval. We also show how toxicant dynamics depend on the pattern

of energy availability. In particular, we show that the vertical transfer of toxicants

depends on birth order. Contrary to conventional wisdom (Aguilar and Borrell,

1994,, Hickie et al. 2000) and observations (Wells et al. 2005), we show that first-

born individuals do not necessarily receive the largest transfer from their mothers.

Finally, we demonstrate that our results are relatively insensitive to the decay rate of

the toxicant in the organism. We summarize our most important results and discuss

their implications in the Discussion. Details of the model specific to right whales,

and step-by-step parameter estimation are in the Appendix.

2.3 Model Description

An individual acquires energy needed for its maintenance, growth, and reproduction

from the environment. With that energy, the organism acquires toxicants. Both the

energy and toxicants are distributed throughout the body. We keep track of these

distributions by partitioning the organism into four compartments (Figure 2-1): blood

(B), structure (G), structural lipids (S) and lipid energy storage (L). We summarize

state variables and their units in 2.1. We summarize the dynamics of the model in

Tables 2.2 and 2.3; in Table 2.4 we list the parameter values.
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ENVIRONMENT

Pharmacokinetics Energetics

BLOOD MAINTENANCE "q BLOOD
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> ... -STRUCTURE

REPRODUCTION G
R

STRUCTURAL STRUCTURAL
LIPIDS S- LIPIDS S

A .. Toxicant A
K> biotransformation

LIPID Energy StorageL LIPID Energy StorageL

Figure 2-1: Model outline with pharmacokinetic (left) and energetic (right) model
compartments. Reproduction (R), metabolism (M) and transformation of toxicants
act as sinks for energy, toxicants, or both. Toxicant biotransformation includes all
processes that change the molecular form of the modeled toxicant.

Table 2.1: Compartments and state variables with units.

Compartment Energetics Toxicology
I Environment f C, [mg/kg]
G Structure V[m 3]

B Blood EB[kcal] CB[mg/kg]
L Lipid energy storage EL [kcal] CL [mg/kg]
S Structural Lipids Es[kcal] Cs[mg/kg]
R Reproduction
M Maintenance
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Table 2.2: Equations for the energy fluxes.
Flux [kcal/y] Description

FIB Imaf V 2/ 3  intake of energy from the environment into blood
FBAM mV energy spent on maintenance
FBG =[IGEB - FBM]+ energy utilized for growth1

FBL /3LEB energy flux from the blood to the lipid storage
FLB - !LkLEL energy flux from the lipid storage to the blood
FLS = es d v lipids transformed into structural lipids

1 T
FBR = R1 (FBM + FGR + FER) flux of energy to reproduction (details in text)

1 [X]+ is a shorthand notation for max(O, X).

Table 2.3: Kinetics: rates of change of state variables.
Comp. Dynamics

el= function of t
C= function of t (constant in our simulations)d 1

G -•Y = •FBG

B B = FIB + FLB - FBL - FBM - FBG - FBR

7jCB = --- (CIFIB - CB (FBL + FBR + AEB) + CLFLB) - YBCB

LE = FBL - FLB - FLS
- CL =E, (CBFBL - CL (FLB + FLS + d EL)) - DLS(CL -Cs)V

2 /3

!E =FLS
Cs = E-L- (CLFLs - C- jEs) + DLS(CL - Cs)
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Table 2.4: Right whale parameter values.
Parameter Value Description

ENERGETICS

OG 52 y- 1  rate of utilization of lipids in blood

f3 L 365 y- 1  energy conductivity
m 6.33. 106 kcal.m-3y-1  cost of maintenance for unit of V
g 4.4. 106 kcal/m- 3  energetic cost of growing structure
kL 0.02 equilibrium ratio constant between B and L
Ima. 2.41 _ 107 kcal.m-2 y-I energy acquisition rate per organism's area

PHARMACOKINETICS

YB 0 y- 1  toxicant decay in the blood
DLS 0.09 m- 2 .y 1  toxicant diffusion coeff. between L and S

REPRODUCTION
ERmin 1.4 - 108 kcal minimum stored energy to start reproduction
7gestation 1 y length of gestation
Tuactation 1 y length of lactation
a 1.25 m3 /y rate of growth during gestation

0vB 0.35 y- 1  von Bertalanffy rate constant
Vma. 52.5 m3  maximum V under ideal conditions
kR 0.7 efficiency of reproduction

INITIAL CONDITIONS
eso 1500 kcal/m 3  energy density (Es/V) of the structural lipids
C1  0.035 mg/kg lipid-normalized intake toxicant concentration
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2.3.1 Energetics

We assume that all tissue may be characterized as either "energy reserves" or "struc-

ture" (Kooijman 2000). The energy reserves are materials that can be utilized as an

energy source for maintenance and growth (e.g. non-structural lipids, carbohydrates,

and proteins). Any tissue the animal cannot utilize for energy during starvation (e.g.

bones, structural lipids etc.) composes the structure. The exact composition of the

energy reserves and the structure depend on the species. Some tissues, such as muscle,

belong to both energy and structure to some degree: an organism uses muscle protein

as energy when starving, but retains some even when it faces death from hunger.

We propose that the energy dynamics of a marine mammal can be captured by

focusing on lipid dynamics, as long as the relative amounts of different compounds

composing the energy reserves have a constant ratio. For example, muscle protein is

depleted in a constant proportion to energy reserves in the blubber during starvation

(Struntz et al. 2004 pp 18, Nordoy and Blix 1985). Hence, the dynamics of any

component of reserves contains information about other types. We have chosen to

keep track of lipids because they are the largest energy reserve in marine mammals,

and because lipid dynamics determine the pharmacokinetics of lipophilic toxicants.

The proportionality assumption does not hold for some types of energy reserves, e.g.

protein and glycogen. This, however, does not influence overall energy dynamics

because such types comprise only a small fraction of standing energy reserves; for

example, during starvation 94% of energy consumption in grey seals (Halichoerus

grypus) comes from subcutaneous blubber (Nordoy and Blix 1985).

Lipids, and the tissues that hold them, have multiple functions (Struntz et al.

2004, Koopman et al. 2002). The largest pool of lipids is the blubber, but not

all lipids in the blubber are readily metabolized. Lipids in the superficial blubber,

i.e. lipids in and beneath the epidermal layer are barely metabolically active and

can be neglected as a source of energy for the organism (Struntz et al. 2004). The

metabolic activity of the blubber increases with depth, and deepest layers are most
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metabolically active (Koopman et al. 2002, Aguilar and Borrell 1990). Recognizing

this, we lump all metabolically inert lipids, such as those in the superficial blubber,

into the "structural lipids" compartment (S), and all metabolically active lipids, such

as those in the middle and deep layers of the blubber, into the "lipid energy storage"

compartment (L).

The structure compartment (G) includes all the structure except the structural

lipids, and we assume that its composition remains constant through ontogeny. We

further assume isomorphic growth, with the implication that the structural volume

(V) of the animal is proportional to the cube of some measure of its length. We use

V as the state variable representing structure. The blood (B) mediates all transfor-

mations of energy and toxicants on short time scales, such as those in the gut and in

the liver.

The dynamics of the energetics model is determined by fluxes (rates of flow of

energy) between compartments. We denote a flux from compartment X into comn-

partment Y with FXy.

Growth (FBG) and maintenance (FBM) of structure G

We assume the energy flux to growth and maintenance is proportional to the lipids

available in the blood (EB), with a constant of proportionality that characterizes the

rate of utilization of lipids, /3 G. Maintenance has priority; an organism can utilize

energy for growth only after it meets the energy requirement for maintenance.

The energy costs of maintenance depend on the size of the organism, and its energy

expenditures for foraging and migration. We follow the dynamic energy budget (DEB)

theory of Kooijman (2000) and assume that these costs are proportional to the volume

of the organism. Hence, the energy flux FBM required for maintenance of an organism

of volume V is

FBM = mV, (2.1)

where 7n is the energy required per unit of time to maintain a unit of volume.
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The flux of energy to growth, FBG, is the flux possible after maintenance has been

met:

FBG = [PGEB - FBM]+, (2.2)

where [x]+ is a short-hand notation for max(x, 0). If the energetic cost of growth by

a unit of volume is g, the rate of growth of the organism is:

dv = FBG (2.3)

dt g

Energy assimilation (FIB)

Only a fraction of the energy intake is assimilated and transported by the blood

throughout the body. Hence, the flux of energy from the environment to the blood

(FIB) depends on food density in the environment, the organism's foraging ability, its

ability to process food, and its energy assimilation efficiency. We assume isomorphic

growth, so that the energy intake from the environment is proportional to the area

of the feeding structures (e.g. surface of the baleen), which is proportional to the

surface area of the organism. Then,

FIB = ImaxfV 2 / 3, (2.4)

where Iliax is the maximum assimilation rate per unit area, and f a saturating, Type

II function of ej, the environmental energy density:

f = el, (2.5)k, + eI

where k, is the half-saturation constant. Throughout the paper, we refer to f as en-

ergy availability. Since every organism has different food types and foraging patterns,

the exact meaning of these parameters needs to be determined separately for each

organism (see Gurney and Nisbet 1998, pp. 87 for details).
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The energy intake determines the ultimate size of the organism, V", and the

maximum size of the organism, Vmax. At V,, in a hypothetical constant environment

and when not diverting energy into reproduction, the organism spends all the acquired

energy on maintenance, i.e. FIB = FBM. From (2.1) and (2.4),

V. = (J/2f) 3 . (2.6)

The maximum size is attained for f = 1:

V.. = (1..a)3. (2.7)

Dynamic equilibrium between blood and lipid energy storage (FBL and

FLB)

The blood and lipid energy reserves are in direct contact and, therefore, try to equi-

librate through exchange of lipids. We assume the flux from one compartment into

another depends linearly on the amount of lipids in the origin compartment, and does

not depend on anything in the destination compartment. Then, the flux of lipids from

B to L (FBL) and L to B (FLB) are:

FBL = 13LEB and (2.8)

FLB = LkLEL. (2.9)

The net transport of lipids is equal to the difference between the two fluxes.

Growth of structural lipids S (FLs)

Growth is the only process relevant to structural lipids, and it is proportional to the

growth of structure:
d Esd,-Es- - V. (2.10)
dt V3dt
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The biggest pool of structural lipids - the external blubber stratum - is not metabol-

ically active, and does not differ significantly in composition between demographic

groups (Aguilar and Borrell 1990). This holds for acoustic fats as well. Structural

lipids are typically not significantly vascularized and are, therefore, not metabolically

active. This leads us to assume that structural lipids are made from energy storage

lipids directly by gradual processes such as de-vascularization, rather than through

blood. Hence, the only flux to the compartment S is the flux from L:

dFLS =esoftV, (2.11)

where eS0 is the proportion of lipids in the structure of the organism.

Reproduction (FBR)

After conception, mammalian reproduction has two parts: gestation and lactation.

We model them separately because they have different modes of energy and toxi-

cant transfers. In gestation, the mother transfers energy and toxicants through the

placenta. During lactation, the mother transfers energy and toxicants through milk.

We assume that females conceive if, during the reproductive season, the energy in

their lipid energy storage is greater than a certain critical value, ER. This assumption

is consistent with the observed low variation of lipid storage energy density in female

fin whales (Aguilar and Borrell 1990), suggesting that they reproduce upon reaching

a certain 'trigger' lipid storage energy density. Whether female fin whales accumulate

that energy after becoming pregnant, or become pregnant because they have reached

the energy density is not clear. Nevertheless, given that onset of ovulation in some

mammals depends on their energy reserves (Frisch et al. 1975, Van der Spuy 1985,

Frisch 1990, but see Bronson and Manning 1991), that reproductive performance in

mammals which experience seasonal food fluctuations depends on energy reserves

of mature females (Frisch 1978, Gopalan and Naidu 1972, Lee 1987), and that fin
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whale fecundity seems to be food-limited (Lockyer 1986), it is plausible to assume

that marine mammals trigger ovulation depending on available energy storage. This

view is corroborated for right whales by observations (Angell 2005). We assume that

there are always enough males present that, upon ovulation, a female is fertilized and

becomes pregnant.

The flux of energy to reproduction includes the flux needed for maintenance (F.n,),

growth (FBGR), and increase of energy reserves (FER) of the young mammal( during

gestation and lactation:

FBR = (FBR + F"R + FBR), (2.12)

where kR is the reproductive efficiency of utilization of energy, potentially different

between gestation and lactation.

We assume that mother is able to meet all energetic needs of the calf during gesta-

tion. We use an empirical model for fetal development commonly used for iriamirials

(Martin and MacLarnon 1985), combined with the assumption that the mass of the

fetus is proportional to its volume. According to the model, the volume of the fetus,

VF, at time T > 0. 2 Tgestation since conception is

VF(T) = a(T - 0.2Tgestaticm ) 3 . (2.13)

The volume of the fetus and the rate of change of the volume determine the energy

needs of the fetus and, therefore, the mother's energy flux to reproduction.

Total energy flux to reproduction during gestation for T > 0. 2 Tgestatian includes

the flux for maintenance of the fetus,

FM (T) = nVF(T-), (2.14)
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growth of the fetus,
FB'R(T) = dvF(_T), (2.15)

and energy transferred to the fetus to build its energy reserves. In our model, the

fetus acquires lipid energy reserves throughout gestation even though during fetal

development energy is directed mainly towards growth, and lipid energy reserves are

developed in the late stages of fetal development (Struntz et al. 2004). Energetically,

the timing is not an issue because there is no cost associated with storing reserves, and

only total amounts of matter transferred. For the same reason, the timing does not

affect estimates of toxicant transfer because the toxicant transfer mainly depends on

the total amount of lipids transferred. It may not be a significant issue for estimating

gestational exposure either, because the fetus does not experience major bioaccumu-

lation during gestation (the concentration of toxicants in its blood equilibrates with

the mother's).

When connecting the energetics of gestation to pharmacokinetics, we assume that

there is no placental barrier to toxicant transfer, and therefore the calf's and the

mother's concentration of the toxicant in the blood tend to equilibrate. The validity

of this assumption is not vital to our model because the bulk of energy (arid, therefore,

toxicant) is transferred during lactation (Young 1976). However, if exposure during

fetal development is of concern, a more detailed model of fetal development, including

the transport of lipids and toxicants across the placenta, may be required.

We assume that energy in the blood of the fetus is just sufficient to provide

the energy flux for maintenance, and that the energy in the lipid energy storage

compartment is in a dynamic equilibrium with the lipids in the blood:

E Fetus 1 LM
BL - 1 FBR, (2.16)

EEL -- 1 FAs (2.17)

OLkL BR"

The energy flux from the mother required to satisfy (2.16-2.17) and the increase in
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the structural blubber, for 7- > 0.2 Tgestation, is the energy needed to increase energy

pools of the fetus proportionally to the change in volume:

FBR (- (i++)m -eSO) fLVF(T). (2.18)

After birth, a newborn depends exclusively on its mother's milk for energy un-

til weaning (Thomas and Taber 1984). During nursing, there are two competing

processes: what the nursling demands and what the mother can give. The energy

transferred is equal to the lesser of the two after adjusting for the inefficiencies of milk

production and nursing. We assume that the nursling has an "ideal energy demnand"

which would allow it to grow following the von Bertalanffy growth curve, V,,13(t), with

its ultimate goal to reach the maximum volume observed for the species (V..). The

energy flux required to meet the target growth curve V,1 (t) is the sum of energy

fluxes needed for maintenance, growth and increasing energy reserves of the nursling:

FBMR mVB(t), (2.19)
d

FBR g-V,,B(t), and (2.20)
dt

FBR = (eBo+eLo +eSo) 1,B(t). (2.21)

Here we assume that the nursling tries to match the energy density of its mother at

conception, eBo in the blood, and eLo in the lipid storage compartment.

Using our model, we calculate the growth of the nursling from its actual energy

assimilation, which is the minimum between the ideal energy demand and what the

mother can provide. When the mother is not able to meet the ideal energy de-

mand, the nursling receives less then ideal energy flux. If this flux combined with the

nursling's energy reserves is not sufficient to meet the maintenance requirements of

the nursling, the nursling dies.
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2.3.2 Pharmacokinetics

Our pharmacokinetic model keeps track of lipid-normalized concentrations of toxi-

cants in an individual (Table 2.1) by modeling the biotransformation and movement

of lipophilic toxicants between compartments of the organism. Unless otherwise men-

tioned, all concentrations are lipid-normalized, expressed in milligrams of toxicant per

kilogram of lipid (mg/kg). Upon entering the blood, the toxicants can either be bio-

transformed (e.g. hydroxylated (Borga et al. 2004)), or transported throughout the

body.

With the exception of the compartment G (structure without structural lipids),

compartments in the pharmacokinetic model correspond to those of the energetics

model. The compartment G is not directly involved in the toxicant dynamics because

it does not include any lipids.

Lipophilic toxicants are not completely free to diffuse between compartments, nor

are they all covalently bound to the lipids. Therefore, the transport of toxicants

between compartments is a mixture of passive transport where toxicants behave as

if they were not bound at all to the lipids, and lipid-facilitated transport where

toxicants behave as if they were covalently bound to the lipids. We model both

modes of transport.

Facilitated transport is assumed to be completely controlled by the fluxes of en-

ergy in the energetics model: the toxicant flux from one compartment to another is

proportional to the concentration of the toxicant in the source compartment and the

flux of lipids from the source to the destination compartment. We assume no barriers

to facilitated toxicant transport between compartments.

Passive transport involves the diffusion of toxicants between compartments. Dif-

fusion rate is proportional to the difference in concentrations of toxicants, and to

the boundary area between the compartments (Crank 2004) which, in view of our

assumptions of an isomorphic animal, is assumed proportional to V2 /3 . Therefore,

the rate of change of concentration of toxicants in compartments X and Y due to
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diffusion is:
d d-Cy = -- Cx = Dxy (Cx - Cy) V 2 3 . (2.22)
dt dt

Regardless of the method of transport, we assume the toxicants redistribute within

compartments instantaneously, i.e. the concentration within any compartment is

uniform.

Although the model can account for biotransformation of toxicants in all comi-

partments (Figure 2-1), the rates of biotransformation in the blood compartment are

higher than in other compartments (Boon 1992, Borga et al. 2004). Furthermore,

the other compartments communicate with the blood on time-scales much shorter

than rates of biotransformation in those compartments. Therefore, we can simplify

the model by assuming that only the biotransformations of the toxicants in the blood

(e.g. by liver, gut and vascular endothelia) are significant. We represent these bio-

transformations as a sink of toxicants - when biotransformed, toxicants are lost from

the model.
dtAside from the dilution by growth (proportional to -Cix •Ex for any compart-

ment X), the rate of change of toxicant concentration of any compartment is deter-

mined by its sources, sinks, and passive and/or facilitated exchange of toxicants with

other compartments. We do not model feedback of contaminants on rate processes

(e.g. Leung et al. 1990a, Leung et al. 1990b), but such feedback could be incor-

porated if necessary. The environment is the original source of all the accumulated

toxicants.

Because of our choices of units motivated by the literature, we need a conversion

factor r to connect fluxes of energy ([kcal/y]) to fluxes of lipids ([kg/y]). The factor

has units of kg lipid per kcal (kg/kcal). We do not need to know its value, as it cancels

out in the equations for rates of change of toxicant concentrations (Table 2.3).
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Blood compartment (B)

We assume that toxicants in the blood experience both facilitated and passive trans-

port to and from lipid energy storage. Fluxes of lipids to and from the blood coin-

partment are both large, even when the standing stock (EB, CB) is small. Because

of this, we assume that the dominant mode of transport of toxicants between the

blood and the lipids is facilitated and ignore passive toxicant transport in and out

of the blood compartment. Facilitated transports include the environmental input

(7]CIFIB), the exchange with the lipid energy storage (rl (CLFLB - CBFBL)) and a

sink: reproduction (--qCBFBR).

Additional sinks include biotransformation (--YBCB), urinary excretion, and res-

piratory exchange. Urine is not rich in lipids and, according to our assumptions,

cannot be a large sink for non-metabolized lipophilic toxicants. Breathing is poten-

tially both a source and a sink; we assume, however, that the respiratory exchange

of lipophilic toxicants is much smaller than the nutritional input and can, therefore,

be ignored. Hence, we ignore urinary excretion and respiratory exchange because we

deem them not important, cannot parameterize them reliably, and account for them

(at least partially) through biotransformation. These processes can be included in

the model at a later date if necessary. Note that fecal excretion is accounted for by

the assimilation efficiency (which is equal to the assimilation efficiency of energy):

some lipids pass through the digestive system, and so do the toxicants associated

with them.

Lipid energy storage (L)

Facilitated transport includes transfers between the lipid energy storage and the blood

(77 (CBFBL - CLFLB)) and a sink from the toxicant flux associated with the growth of

the structural lipids (--rCLFLs) . Passive transport consists of the diffusion between

the two types of lipids (-DLS(CL - Cs)v2i3).
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Structural lipids (S)

Since we assume that the structural lipids are created from the energy storage lipids,

their exchanges of toxicants include only the flux from the energy storage lipids during

creation of structural lipids (TqCLFLS) and diffusion with the energy storage lipids

(DLS(CL - Cs)V 2' 3 ). Additional losses of toxicants could include losses through

shedding of skin. We did not find evidence that shedding comprises a big sink, and

thus ignored it.

2.4 The Right Whale

There are three species of right whales: the North Pacific (Eubalaena japonica), the

North Atlantic (Eubalaena glacialis) and the Southern (Eubalaena australis) right

whale (Rosenbaum et al. 2000). There are possibly additional stocks within these

populations (The North Atlantic right whale recovery team 2000). Prior to the ban

on right whale hunting in 1935 (Convention, 1931), all right whales had been com-

mercially exploited and brought to dangerously low levels. The Southern right whale

recovered since the ban and exhibits a yearly population growth rate of more than

7% (Best et al. 2001). The recovery of the North Pacific right whales seems to be

threatened by illegal hunting, but more research is needed to quantify their status

(Brownell et al. 2001). The North Atlantic right whale was hunted down from as

many as 1900 whales in 1630 to as few as 50 in the 1800s (Reeves et al. 1992). Since

the ban on hunting, it has recovered to the estimated 300 individuals today (Kraus et

al. 2001). In spite of this small recovery, the Northern Atlantic right whale seems to

be declining again with an increasing rate. If these trends persist, the North Atlantic

right whale is expected to go extinct in about 200 years (Fujiwara and Caswell 2001).

Some insight into demographic reasons for the continuing decline can be gained by

comparing the North Atlantic whales with their southern cousins: the North Atlantic

right whale has twice the mortality rate, while their calving interval is almost double
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that of the southern right whale (Kraus et al. 2001, Best et al. 2001, Brunell 2001).

Whereas gear entanglement and ship strikes account for most of the higher mor-

tality (Fujiwara and Caswell 2001), and reducing these causes may be necessary for

their recovery, it is also important to understand why their calving interval is so

long. The reason may be the fact that right whales need large amounts of energy for

growth, maintenance and reproduction, which may not be available in the environ-

ment. They also may be at risk from toxicants because, even though right whales

are not high in the food chain because they feed mainly on zooplankton, their lipid-

rich nature and marine mammal life history makes them potentially vulnerable to

persistent bioaccumulating compounds such as PCBs. Therefore, a combination of

nutritional stress and exposure to toxicants may be increasing the interval between

successful reproductions and reducing the fertility (Knowlton et al. 1994, Angell et

al. 2005).

Right whales can also experience additional hazards due to starvation-induced

exposure when inactive toxicants stored within the lipids get mobilized as, the lipids

get utilized (Aguilar et al. 1999). This is of a particular concern because right

whales fast during a part of the year (Best and Schell 1996) and nutritional stress

could interact with such exposure to further degrade growth and reproduction of

individuals.

We describe the details necessary to adapt the model to the right whales and esti-

mate the parameters in the Appendix. The parameter values are listed in

Table 2.4.

2.5 Results

2.5.1 Growth and reproduction

To investigate the dependence of growth and reproduction on energy intake in right

whales, we look at the growth and reproduction in a constant environment, and in-
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vestigate the consequences of seasonal fluctuations and starvation. Unless otherwise

noted, all plots are of a first-generation, first-born individual. This is necessary be-

cause our model needs energy input during gestation and nursing of one generation,

which requires a mother from a prior generation. We simulate the zero-generation

mother by initializing the model from her weaning. We used the whale MH-89-

424-Eg from Moore et al. (2005) to estimate her initial conditions (V(0) = 1 in',

EL(O) = 1.86. 106 kcal, EB(O) = 1 kcal, no burden).

To investigate growth, we calculate the length of a non-reproducing individual as

a function of age for values of the scaled functional response f, a measure of energy

availability defined by equation (2.5), ranging from f = 0.75 to f = 1 (Figure 2-2).

The data from Moore et al (2005) for individuals older than 1 year fall within the sizes

predicted for the range in f. Using (2.6), the observed ultimate size of about 14.5m

suggests that an appropriate value of f for the North Atlantic right whale would be

around 0.8. This is an under-estimate, as it does not take into the account energy

spent on reproduction.

To account for the energy spent on reproduction, we use observed calving in-

terval of about five years (Kraus et al. 2001) to estimate f in the North Atlantic,

fNA. Comparing the mean interval between reproductive events of a first-generation

mother over a 100-year period for a range of energy availability (Figure 2-4). Compar-

ison between the calculated and observed calving intervals suggests that fNA = 0.9.

A reproductively active female experiencing fNA grows to the same size as a non-

reproducing female experiencing f = 0.8 (Figure 2-3). Thus we set f = 0.9 in all

simulations unless otherwise noted.

According to the model, an increase of only 10% in f, representing an order of

magnitude increase in e1 for the given (underestimated) !m.ax, would decrease the

calving interval of the North Atlantic right whales to three years, equal to that of

their southern cousins. Furthermore, the age at first parturition, which includes the

gestation period of the first calf, decreases from the predicted seven years to six years
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Figure 2-2: Length of non-reproducing right whales as a function of age for a range of
f. Circles represent data for individuals older than one year from Moore et al (2005).
Negative ages represent gestation.
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Figure 2-3: Influence of reproduction on growth. Reproducing females (solid linle)

experiencing f = 0.9 grow to the same size as non-reproducing females (dotted lilies)

experiencing f = 0.8.
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for the same change in f.

A whale's response to seasonal environmental variability may influence reproduc-

tion. The energy availability, f, is a Type II functional response of el, the energy

density available in the environment (see equations 2.4 and 2.5) which, in turn, de-

pends on the season and the location of the right whale. Rather than trying to

capture the intricate and fairly poorly understood typical yearly energy availability

pattern of the North Atlantic right whales (see Winn et al. 1986 and The North

Atlantic right whale recovery team 2000), we assumed that the energy density in the

environment experienced by the individuals oscillates sinusoidally. This corresponds

to the assumption that there is a season of food abundance, a season of food scarcity,

and two transitional seasons. Since the functional response f is determined by the

ratio of el and the half-saturation constant KI, we did not have to determine KA

explicitly. Instead, we wrote f in terms of ej/K 1 . Then, inserting the sinusoidal

environmental forcing, eI/Kj = a(1 + sin 2nr(t + ¢)), and rearranging gives:

t a(1 + sin 27(t + 0))f(t) = 1 + a(1 + sin 27r(t + 0))' (2.23)

where 0 is the phase shift of the sinusoidal relative to breeding season, and a the anm-

plitude of oscillations. For each simulated a, we calculated average food availability,

f. = of f(t)dt, and compared first parturition times and calving intervals to those of

constant food availability f = f,, (Figure 2-4). We use 0 = 0.5 y in the simulations,

corresponding to the assumption that mothers give birth at the onset of food scarcity.

This assumption is consistent with the observations (Winn et al. 1986). When the

onset of food abundance happens at the start of the breeding season (¢ - 0 y), first

parturition times and calving intervals are significantly longer for low f,. Generally,

seasonal oscillations increase the calving interval and time to maturity (Figure 2-4),

but the effect is small for large f.

The energy budget of individuals changes during growth and reproduction. An

individual has the largest energy storage density (eL = EL/V) at weaning (Figure 2-5
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Figure 2-4: Calving interval averaged over simulation time, and age to maturity for
a range of average energy availability (f). The seasonally variable f(t), described by
(2.23), has an average of f, and a period of a year (see text for discussion).
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,(A) and (B)). This surplus energy gets utilized for growth after weaning; the growth

rates decrease once that additional energy received from the mother is depleted. The

model predicts that reproductively active females are smaller than males of the same

age because females stop growing during reproductive events (Figure 2-5 (A)). Re-

productive signal is noticeable even in the fluctuating environment, with the females

spending about 55% of their energy storage on reproduction when f = fNA, and only

about 39% when f is 10% higher. Therefore, a relatively small increase in energy

intake (FIB) not only substantially decreases the calving interval, but also reduces

the stress (in terms of energy loss) on the mother as well. Consistent with observa-

tions (Moore, personal communication), the model predicts that an adult male dies

of complete starvation (e.g. because it cannot feed due to entanglement in fishing

gear) in a little less than 8 months (not shown).

An interesting consequence of the dynamic energy budget predicted by the model

is the possibility of a calving interval hysteresis: the calving interval depends not only

on energy availability, but also on the history of energy availability. If there is a long-

term decrease in f, the calving interval of females that have grown up during higher J'

will be longer than that of females which have matured during lower f. For example,

if f decreases from I.IfNA (three year calving intervals) to fNA when the female is 20

years old, her average calving interval increases to 6 years, rather than 5 years, as it

would be had she experienced fNA all of the time. This means that, depending on its

duration, high energy availability could have negative long term consequences on a

population if it is followed by a stretch of low energy availability because it may take a

whole generation until the population optimally utilizes the lower energy availability.

Furthermore, when the energy availability is extremely low, smaller mature females

are able to take better advantage of a sudden increase in energy availability. Both of

these effects are a consequence of higher maintenance requirements of larger females.

When the energy is readily available, bigger size is advantageous because it helps take

advantage of the available energy, but when the energy is scarce, smaller size is more
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desirable because of lower maintenance costs.

2.5.2 Toxicant distribution and vertical transfer

Energy dynamics drives bioaccumulation and distribution of toxicants. We assumed

that toxicants are introduced into the organism exclusively through energy assimi-

lation, excreted exclusively through reproduction, and biotransformed exclusively in

the blood compartment. Initially, we ignore biotransformation (mYB = 0).

When energy and toxicant in the environment are constant, concentrations of

toxicants in all types of lipid follow a similar pattern of bioaccumulation (Figure 2-5,

(C)). During nursing, nurslings bioaccumulate toxicants rapidly because they ingest

milk with high concentration of toxicants, use some of the energy from the milk for

maintenance and growth, but have no way of excreting the toxicants. Toxicant con-

centrations of the calves peak at weaning and then decrease due to dilution of toxicants

by ingestion of lipids with relatively low environmental toxicant concentrations.

Energy budget dynamics in a variable environment result in toxicant concentration

differences between compartments (Figure 2-5, (D)). When the energy assimilation

rate is high, the organism stores the ingested lipids and dilutes the toxicants in the

blood, as well as in the lipid energy storage. When the energy assimilation is low,

the organism is starving and drawing lipids and toxicants from the lipid energy stor-

age. Since lipids are used for maintenance, toxicants accumulate in the blood. This

starvation-induced mobilization of toxicants is clearly visible as peaks of concentra-

tion in blood and lipid energy storage. As f oscillates, the concentrations in the blood

and the lipid energy storage follow with a phase lag. The phase lag of concentration

oscillations in the blood is about a month less than that of lipid energy storage. Due

to the diffusive nature of exchange of toxicants between the structural and energy

storage lipids, structural lipids act as a low-pass filter: since Cs always tends to

equilibrate with CL, but does so slowly, CQ reflects only trends in CL. Complete

starvation (e.g. due to entanglement in fishing gear) can increase CB by an order of
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magnitude (not shown).

After the females mature, they export toxicants through reproduction. Females

are predicted to lose about 40%-45% of their toxicant burden during a reproductive

event, consistent with about a 53% loss estimated during 18-months of nursing in

beluga whales (Hickie et al. 2000). Reproduction is not completely efficient because

mothers discard of tissue (e.g. placenta) and a proportion of the mother's milk is

excreted by the calf. These inefficiencies (parameterized by kR) imply that calves

assimilate only 70% of the burden lost by the mother, or about 30% of mother's

initial burden.

The bulk of (potential) decrease in concentration of the toxicants in the mother's

tissue comes from dilution after the reproduction event, rather than loss of toxicants

during reproduction. During reproduction, the energy transferred has almost the

same concentration of toxicants as the lipid storage. Therefore, the concentration of

toxicants in all the mother's compartments is roughly constant for the duration of the

reproductive event. After the reproductive event, the mother ingests and stores lipids

from the environment with a lesser toxicant concentration than her own, thus diluting

the toxicant and reducing the concentration in her lipids. This may not happen when

the energy availability is low and the rate of bioaccumulation is greater than the rate

of dilution.

For a grown female in a constant or seasonally varying environment, the export

of toxicants during reproduction and the bioaccumulation between two reproductive

events effectively equilibrate after a few reproductive events. The export is larger

the greater the burden, while bioaccumulation between two reproductive events re-

mains constant. Hence, if the export during a reproductive event is greater than the

toxicants accumulated between two reproductive events, females experience a reduc-

tion of their toxicant burden. If the export is smaller than the bioaccumulation, the

burden increases. Eventually, the two are practically equal. Hence, in the long run,

the toxicant transfer is determined by the difference between bioaccumulation and
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reproductive loss. The mother's history of pre-reproductive exposure is, therefore,

reflected only in the first few reproductive events, and the transfer of toxicants to

the next generation after those few events is practically the same regardless of the

mother's pharmacokinetic history. In Figure 2-5 (C), toxicant transfer is close to

equilibrating by the third or fourth reproductive event.

The calculated pattern of bioaccumulation is consistent with the commonly as-

sumed marine mammal patterns and observed PCB concentrations in North Atlantic

right whales and other marine mammals (Lee et al. 1996, Ross et al. 2000, Weis-

brod et al. 2000 (Figure 2, top right plot)). Weisbrod et al (2000) measured lipid-

normalized prey concentrations of PCBs between 0.01mg/kg and 0.4 mg/kg, and

the right whale blubber concentrations between 0.1 and 8 mg/kg. This suggests that

bioaccumulation amplifies the environmental concentration by an order of magnitude,

consistent with our predictions.

Even though the accumulation of toxicants in both males and females is greater in

seasonally variable environments, there are significant differences between male and

female patterns of accumulation (Figure 2-6). For example, a 30-year old male is

larger than a female of the same age and has more than double the concentration of

toxicants. The large difference between toxicant concentrations in male and female

right whales can only be attributed to vertical toxicant transfer from the mother to

her calf during gestation and lactation.

The mass of toxicant transferred correlates with the calving interval (especially for

second- and later- born calves) and depends on the birth order of the calf (Figure 2-7).

For large energy availability, the firstborn calf can get as much as twice the burden

the subsequent calves get because its mother accumulated a large burden through

nursing and maintenance requirements during nursing. However, if food is low, the

calving interval is large and the toxicant has an opportunity to bioaccumulate to a

greater extent in the interval between the calves than before the first calf. Then,

the transfer of toxicants increases with birth order. For the values of f currently
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experienced by the right whales, toxicant transferred decreases with birth order.

Because there were no data available, we assumed a low but arbitrary proportion

of structural blubber (eso), and for simplicity we set the rate of biotransformation of

toxicants (}B) to zero in our simulations. To better understand how these parameters

influence the analyses, we repeated simulations for a range of values of eso and -Y,.

The proportion of structural blubber does not significantly influence time to matu-

rity, calving interval, or vertical transfer of toxicants when structural lipids constitute

less than 5% of the total lipids (eso < 5 105 kcal/in 3 ). The effects are moderate when

the structural lipids account for up to 13% of the total lipids (eso < 106 kcal/mn3): the

age to maturity increases by a year because more lipids have to be accumulated prior

to reproduction, and concentrations of toxicants decrease by 50% because a greater

proportion of the body is in the form of lipids. Consequently, the vertical transfer to

the first three calves decreases, but by the fourth calf, transfer effectively equilibrates

with bioaccumulation and is the same as if we ignored structural lipids.

Small -y3 does not perceptibly influence the analyses. The estimates of the bio-

transformation rates of PCBs are low: 0.05-0.08 y-' in beluga whales (Hickie et al.

1997), and 0.2 - 0.4 y- 1 in humans (Phillips et al. 1989). The individual toxicant

concentrations and the vertical toxicant transfer are nearly linear functions of 'yB and

environmental toxicant concentration (CI), even when B is as large as 5 y-' (Figure

2-8). At rates of biotransformation comparable to those of PCBs, individual toxi-

cant concentrations and toxicant transfer are practically the same as those without

biotransformation. Even biotransformation rates on the order of months (- z , 10)

change the bioaccumulation and toxicant transfer by less than 50%.

2.6 Discussion

Understanding the processes of accumulation, partitioning and vertical transfer of

toxic substances is a necessary step towards quantifying impacts of exposure to con-
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taminants on individuals and, in turn, populations. The lipids are by far the largest

pool of energy, the largest storage depot of lipophilic toxicants, and the main vector

of vertical toxicant transfer in marine mammals. Our model predicts the storage and

utilization of lipids for a given energy intake, and calculates the associated toxicant

dynamics. For a specified food availability and lipid-normalized concentration of tox-

icants in the environment, it predicts the size and energy reserves of an individual as

a function of age, and the lipid-normalized concentrations of toxicants in the three

main reservoirs: blood, lipid energy storage, and structural lipids. When applied to

the right whale, the model captures many life history parameters, such as age to

maturity, calving intervals and the dynamics of starvation, remarkably well. The

approach and most of the results - are applicable to other marine mammals and,

more generally, other mammalian species that utilize mostly lipids for energy storage.

Our most important results were:

1. The typical energy availability experienced by the right whales (estimated from

observed calving intervals), leads to a first parturition time of seven years for

the North Atlantic, and six years for the southern right whales.

2. A difference in feeding rates (characterized by the model parameter f) of only

10% accounts for the difference in first parturition times and calving intervals

between North Atlantic and southern right whales.

3. Seasonal variability significantly increases age at first parturition and calving

intervals at low values of f, but has a very limited effect for large values of f.

4. At low f, the timing of seasonal variability relative to reproductive season in-

fluences the maturation time and calving interval.

5. Reproduction depends on past, as well as current energy availability (see the

discussion on the calving interval hysteresis in the Results section). This is

partly because we assume that growth is limited by the ability to meet main-
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tenance requirements, rather than genetics. Calving hysteresis depends on the

degree to which this assumption holds for a particular species.

6. Lower energy availability increases the toxicant concentrations and vertical

transfer of toxicants.

7. Contrary to expectations (e.g. Aguilar and Borrel 1994, Hickie et al. 2000,

Wells et al. 2005), the firstborn calf does not necessarily receive the greatest

burden. Energy availability determines the balance between bioaccumulation

and dilution-by-growth of the mother's lipid energy storage after weaning, thus

determining the relationship between birth order and burden received.

8. Biotransformation does not significantly influence toxicant concentrations and

vertical transfer of persistent lipophilic toxicants (such as PCBs).

9. Right whale mothers lose about 40-45% of their toxicant burden during a re-

productive event, and right whale calves assimilate about 30% of their mother's

burden during gestation and nursing.

The quantitative predictions of results 1, 2 and 9 are specific to right whales,

but they suggest that small changes in energy availability could have a big impact on

reproduction of any marine mammal whose reproduction is limited by the food supply.

Further reductions in food supply expose them to additional risks: increased toxicant

exposure (result 6), increased exposure with birth order (result 7), decreased ability to

buffer seasonal fluctuations (result 3) and increased susceptibility to temporal shifts

in peak food availability (result 4).

The time scales at which lipids respond to environmental forcing have implications

for sampling procedures. Blubber biopsies mainly include energy storage lipids, but

can include a significant portion of structural lipids as well (Aguilar and Borrell 1990).

Since the concentration in the blood during starvation increases more rapidly than

the concentration in the energy storage lipids, measuring toxicant concentration in
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energy storage lipids can underestimate the toxicant concentration in the blood and

the resulting organ exposure. This underestimate can be exacerbated if the biopsy

includes a significant proportion of structural lipids because they are even slower to

react to changes of concentrations in the blood.

The biotransformation of persistent toxicants can be ignored in some analyses

(result 8), but if the metabolites are responsible for the toxic effect, the analysis

may require inclusion of biotransformation. If the dynamics of the metabolites are

important, another compartment with the metabolites as a state variable should be

added to the model.

According to our model, individuals grow larger and reproduce more frequently

when food is more abundant. The calving hysteresis (result 5) suggests that growing

during times of abundance may not increase reproduction in the long run if the

periods of abundance are short and infrequent. Therefore, losing the ability to grow

at a mature age may result in more offspring: although organisms are not able to

fully utilize years of abundance because of their smaller size, they make up for it

during the times of scarcity. In such environments, cessation of growth may offer a

competitive advantage over indeterminate growth.

It is advantageous to give birth at the onset of seasonal food scarcity (result 4).

This contrasts with organisms that benefit from abundance at the earliest stages of

the development (Klanjscek et al, 2006). Further research could help explain the

timing of reproduction of marine mammals relative to seasonal cycles of food.

Linking observables such as copepod density to el and the energy intake is a

daunting task, but our analyses do not depend on the correct interpretation of eC

because we were concerned with the energy intake, which is a linear function of I ..a,

and f. Therefore, a small underestimate of Imax can be compensated for by a small

overestimate of f. Translating the differences in f into differences in ef, however,

highly depends on the value of /ma. Our current estimate of /max implies that el

experienced by the North Atlantic right whale is about an order of magnitude lower
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than c, experienced by the southern right whale. Even though such differences in

copepod densities are often observed (Beardsley et al. 1996, Mayo and Marx 1990,

Wishner et al. 1988, Baumgartner et al. 2003), they cannot be directly translated

into changes in el because these changes depend on the value of other energy intake

parameters. For example, our estimate of el comes from f of 0.9 in the Atlantic, and

0.99 in the southern seas. If Imax were 10% higher, f experienced by the Northern

Atlantic right whale would have been 0.82, and that of the southern whale 0.9 - still

a 10% difference in f, but only a two-fold difference in el due to the nonlinearity of

the functional response. Therefore, the interpretation of e1 depends on the estimate

of Ima, and k1 . To better estimate these parameters, we would need to incorporate

variable costs of foraging, and much more information on spatially explicit copepod

dynamics and right whale distribution than is available at this time. Alternatively,

given a population model based on this individual model, we could fit these parameters

to observations of right whale population dynamics and copepod abundance.

The calculated ages to first parturition of seven and six years, for North Atlantic

and southern populations respectively, are significantly smaller than estimates of 9.5+

2.32 years for the North Atlantic (Kraus et al. 2001) and 8.5+2 years for the southern

right whales (Best et al. 2001). However, the average estimates may be inflated by

variable environmental conditions, miscarriages, or lack of fertilization, none of which

are included in the simulations; ages at first parturition as low as five years have been

observed in the North Atlantic (Knowlton et al. 1994).

Our model can help determine the reproductive costs of anthropogenic feeding

interruptions. This could help guide the policy on whale watching, and the use

of alarms to reduce ship strike mortality by inducing collision-avoidance responses

in the whales (Nowacek et al. 2004). The reduction in energy intake due to feeding

interruptions can be represented by reducing Imax. Reducing Imn. of Northern Atlantic

right whales by only 16% is equivalent to reducing f to 0.75, making reproduction

impossible (Figure 2-4). Quantifying these costs of feeding interruptions could help
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balance them with economic and demographic benefits of feeding interruptions.

Adapting the model presented in this paper to other marine mammal species

involves adapting the structure of the energetics and the pharmacokinetics parts of

the model, linking them, and estimating the parameters. Blood, structure and energy

reserves are crucial to the formulation of the energetics part of the model. We linked

the two parts of the model assuming that lipid dynamics drives toxicant transport.

For lipophilic toxicants, this may be sufficient; for others, different approaches -

possibly even additional compartments - may be necessary. Additional compartments

are necessary to distinguish between types of lipids. The need to do so, however,

depends on the significance of the different types of lipids in the particular species, and

toxicological questions of interest. Our results suggest that, to predict the patterns

of bioaccumulation and vertical transfer, structural lipids can be omitted if they

constitute less than 5% of the total lipids.

Estimating the percentage of structural lipids is difficult. Starvation studies on

Harbor Porpoises (Phocoena phocoena) suggest that less then half of the lipids are

readily metabolized (Koopman et al. 2002). This does not imply that all the remain-

ing blubber is structural because death by starvation happens when the flux from the

energy reserves cannot meet maintenance; the flux becomes insufficient before the

reserves disappear. Depending on its physiology (e.g. if OL or kL is low), an animal

can die of starvation with ample reserves left.

Blubber morphology can help distinguish structural from energy storage blubber.

For example, high proportion of collagen in blubber (Pond 1987), low vascularization

(Struntz et al. 2004), and negligible responses to physiological condition of the an-

imal (Aguilar and Borrell 1990, Koopman et al. 2002) suggest structural blubber.

The overall proportions of structural and energy storage lipids are, however, largely

unknown.

Running the model requires all parameters listed in the Table 2.4, which can

be estimated in many ways. Rather than tuning the parameters to fit the outputs
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of the model to observations, we estimated them using physiological considerations

and morphometric data. To do that, we needed to derive and rely heavily on the

relationship between length and structural volume of right whales. This relationship

may be a good approximation for other species, but we believe the parameters in

the relationship are species-specific. Likewise, some estimates (/L, OG,g, YB and

DLS) may hold for most marine mammals, but the rest are probably species-specific.

There is a theory that characterizes interspecific variation in model parameters for

simpler energy budget models (Kooijman 2000). A challenge for theorists is to develop

analogous insight applicable to more complex models, like ours, that share many

assumptions with their simpler counterparts.

Our model describes the responses of individuals, not populations, to environmen-

tal fluctuations. Nevertheless, the conclusions have implications for populations. For

example, if energy availability is low for a long time and then increases, a baby boom

can be expected. Greene et al. (2003) observe such correlations (see also Kenney et

al. 2001), and suggest that the North Atlantic oscillation (NAO) is the main predic-

tor of calving success (see also Fujiwara and Caswell 2001). Our model provides a

mechanistic link between the environment and the individual, but needs a population

model to investigate consequences on the population dynamics.

Similarly, when toxicant concentrations fluctuate, bioaccumnulation, vertical trans-

fer, and export of toxicants out of the population through death may influence the

exposure of individuals. Quantifying that response, however, requires a population

model in conjunction with a toxicant action model to account for effects of exposure

on individuals. These effects can be included through exposure-dependent modifica-

tions of model parameters, for example through foraging ability or maintenance costs

(Nisbet et al. 1997). We are formulating population models based on the individual

model presented here to address such questions.
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2.9 Appendix

2.9.1 Morphometrics

To parameterize the energetics part of the model, we first need to determine the

relationship between the volume of structure and the length of the right whales. There

are two independent data-sets with different physiological measurements. The first is

the summary of 1970-2002 northern right whale (Eubalaena glacialis) necropsies by

Moore et al (2005), which contains lengths, maximum girths, and blubber depths for

four whales ranging from 4.16 to 13.6 meters in length. In the second one, Lockyer

(1976) summarizes the body length, total mass, and blubber mass for the North

Pacific right whale (Eubalaena glacialis sieboldii) for 13 whales ranging from 11.7 to

17.4m in length.

In both cases, we start by relating the weights to volume through Ps = 1070kg/rn 3,

the density of structure, and Pb = 900kg/m 3 , the density of blubber (Nordoy and Blix

1985). The mass W is the sum of the volume of structure (proportional to length

cubed) multiplied by its density and the volume of blubber multiplied by the blubber

density:

W 1k3 pS + VbPb, (2.App.1)

where 1 is the length of the whale in meters.

To use data from Moore et al (2005), we rearrange (2.App.1) using Pvb, the ratio

of the blubber and the total volume:

W  = kP3 Ps + pv b " (2.App.2)

To estimate Pvb, we approximate the whale with a rotationally symmetric ellipsoid

whose longer axis is 1/2, and minor axis is half the height, which is the maximum girth

lg, divided by 27r. Such a minor axis includes both the structure and the blubber,

hence we subtract the thickness of the blubber, 1b, from the minor axis. Then, the
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volume of the blubber is the difference between the volumes of the ellipsoids described

by the two minor axis. Rearranging gives pvb:

( q)
2 -(1 - lb)

2

Pvb (_)2 (2.App.3)

Using W, 1, 19 and Ib from Moore et al (2005),

V = 0.009 13 . (2.App.4)

To use data from Lockyer (1976), we rearrange (2.App.1) using Pwb, the ratio of

blubber and total mass:

W = k13pS + PWbPb. (2.App.5)

The ratio of blubber to total mass is easily calculated from the blubber mass and total

mass given by Lockyer (1976). Moore et al (2005) had data for one right whale (MH-

89-424-Eg) with all the necessary data, so we added it to the data for 13 right whales

in Lockyer (1976). The resulting relationship between the volume of the structure of

a right whale and its length is:

V = 0.009 13. (2.App.6)

This is close to the relationship between mass of the whale and its length found by

Doi (1978, as cited in Ichii and Kato 1991):

W = 0.011 13. (2.App.7)

The difference between the two values may come from the fact that we used just

volume (proportional to mass) of the structure, whereas Doi (1978) used weights of

whole whales. Note that the whale added from Moore et al (2005) to the Lockyer

(1976) data set did not have blubber depths, and has, therefore, not been used in

determining (2.App.4). Hence, the two data sets are completely independent and
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use different approaches to calculate the relationship between volume and length of a

right whale. Note that this volume does not depend on the nutritional status of the

whale, as it does not include its blubber.

2.9.2 Energetics

Energy conductivity (OL) and rate of utilization of lipids for growth (O3G)

Since our modeling framework is new, we did not find literature that uses the same

definition of the rate of utilization of energy and the energy conductivity; hence, we

were unable to get a good estimate of these parameters. Storage and utilization of

lipids is a fairly fast process that has to keep up with daily changes in the balance of

energy acquisition and utilization, while growth (and, therefore, utilization of energy

for growth) is a much slower process. Hence, we estimate that the time-scale for OL

should be days, and weeks for /3G. Thus, we (arbitrarily) set

OL = 365 y- 1 and /3 G = 52 y- 1. (2.App.8)

Cost of maintenance per unit of volume (m)

The energetic cost of maintenance (m) can be roughly estimated from power-laws

of adult maintenance energy requirements. We use the power laws to estimate the

maintenance requirements for a typical adult whale (65, 000 kg, Vo, = 36.9 in 3 ). Since

energy reserves do not need maintenance (Kooijman 2000), and we assume whales do

not spend energy on thermoregulation, this estimate directly corresponds to FBM in

our model. Hence, we can calculate m using (2.1).

Kleiber (1961) and Brody (1968) compare metabolic rates for many species. They

estimate that the resting metabolic rate of species whose adults typically weigh W

(in kg) is

F•BM z 70W 3 / 4. (2.App.9)
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Note that (2.App.9) describes inter-specific variation, and is not inconsistent with

equation (2.1). Lockyer (1976) modifies (2.App.9) to include foraging,

FBM 110W°0 78 3 kcal/day. (2.App.10)

Averaging the data from Lockyer (1976) suggests that the average adult right

whale is 16 m long, implying a volume of 36.9 m 3 and weighs about 65,000 kg.

According to (2.App.10), such a whale requires FBM of about 645,500 kcal/day, so

we can calculate m using (2.1)

in = 6.33. 106 kcal/m 3y. (2.App.11)

Cost of growth by a unit of volume (g)

We calculate the energetic cost of growth (g) by considering the estimates for ener-

getic costs of growth of marine mammals, which range from 1500 kcal/kg for minke

whales (Lockyer 1981) to 9100 kcal/kg for dolphins (Hickie et al. 2000). Methods

used to measure and estimate the costs of growth in these studies do not directly

correspond to g because they either include only the cost of muscle growth, or the

cost of increasing lipid energy storage, neither of which corresponds to our definition

of growth. Therefore, we adopt an intermediate value for g, the estimate for phocid

seals of 4147 kcal/kg (Innes et al. 1987). Multiplying the value with the density of

structure p. = 1070 kg/m 3 (Nordoy and Blix 1985), gives the volume-specific cost of

growth:

g = (4147 kcal/kg) 1070 kg/m 3 • 4.4- 106 kcal/m 3. (2.App.12)

The estimates of m and g reflect the assumption that lipids alone fuel maintenance

and growth. Whales, however, ingest and use other forms of energy in addition to

lipids. Although the other forms of energy do not influence lipid transport and storage
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because we assume the proportions of all forms of energy are constant, we lack the

data to account for other energy sources in parameter estimation. Therefore, we may

be overestimating energy that is needed in the form of lipids.

Maximum assimilation rate per unit area of the whale (!max)

From Vmax, we calculate !max using the maximum observed size of a right whale as a

conservative estimate of the maximum size.

The maximum observed right whale length 1m.a = 18m (Trites and Pauly 1998)

is a conservative estimate of the maximum possible length. Combining (2.7) and

(2.App.6) gives a conservative estimate of the maximum assimilation rate per unit

area:

Imax = m 0.208 Imax = 2.41 .10 7 kcal m- 2y.-1 (2.App.13)

Since it is unlikely that any right whale in nature experienced complete saturation

in food throughout their lifetime, our estimate of !max is most likely an underestimate.

The resulting energy assimilation rate for an average-sized right whale of approxi-

mately 2.7. 108 kcal/y is consistent with the estimated energy ingestion rate for right

whales of 2 • 108 - 6 - 108 kcal/y (Reilly et al. 2004), especially since the estimated

ingestion rate does not take energy assimilation efficiency into the account. However,

our value is on the lower end of the Reilly et al. (2004) estimate, suggesting that

we have indeed underestimated Imax, possibly by 50% or more. This does not have

serious consequences on our analyses because the organism responds to FIB, which is

also a function of f, rather than !max.

Equilibrium ratio constant (kL)

We first assume a whale that is not growing, in a constant environment. This implies

that EB and EL are in equilibrium. We can calculate the equilibrium EB from f3G,

and estimate EL from observations. The equilibrium coefficient then follows from the

ratio of EB and EL.
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First, we calculate EL, the typical energy in the lipid storage compartment (EL)

for an adult whale that is neither reproducing nor growing. The blubber (majority of

lipid energy storage) constitutes about 21% of the whale mass using data from Moore

et al (2005), and about 40% using Lockyer (1976) data for adults. Although different,

these values are consistent because Moore et al (2005) use post-mortem analyses of

often emaciated whales, whereas Lockyer (1976) uses right whale whaling data, where

the capture process favors individuals with more blubber. Using 40% as a value that

is closer to those typically found in the wild, and a caloric content of the blubber of

9320 kcal/kg (Nordoy and Blix), we estimate EL:

EL = 65000 kg 9320 kcal/kg 0.4 = 242.32. 106 kcal. (2.App.14)

Next, we estimate ED, the typical energy in the blood compartment (ED) for anl

adult whale that is neither reproducing nor growing. For such an adult, Fc; = 0 and

FBL = FLB. Using (2.2), we calculate EB:

- FBM
EB-- FAG• (2.App. 15)

Finally, from (2.8) kL is the ratio between EB and EL:

kL = 0.02. (2.App.16)

Duration of gestation and lactation (Tgestatirm and Tlactation)

Gestation in right whales lasts about a year (Best 1994). We assume that lactation

lasts one year as well, although both longer (Thomas and Taber 1984) and shorter

(Hamilton et al. 1995) times have been observed.
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Minimum energy required for reproduction (ER)

We use observations of blubber thickness from Angell (2005) and our ellipsoid ana-

logue of the whale to estimate the minimum energy required for reproduction, ER.

During the reproductive season, reproduction starts if EL > ER. Angell (2005) note

that the blubber thickness of the mother reduces by about 4.5 cm during a reproduc-

tive event. The female whale NEAq1223 died very close to weaning of her calf. Her

blubber depth was 16.2 cm, which implies that her blubber depth at conception was

21.7 cm. Using the ellipsoid analogue of the whale, her length (13.6 m), and girth

(8.8 m), we calculate the volume of blubber female NEAq1223 had at conception to

be 16.65 mi3 . Using the density of the blubber of 900 kg/m 3 and its caloric content of

9320 kcal/kg (Nordoy and Blix 1985), we can estimate the energy needed to conceive:

ER = 1.4- 108 kcal. (2.App.17)

Gestation (a)

We calculate the constant a from the known size of the neonate. Taking a typical

length of a neonate of 480cm from Moore et al (2005), and using (2.App.6) the typical

volume of a neonate is VN - Im 3. From (2.13),

a = 1.25 VN (2.App.18)
Tgestation

= 1.25 m3/y. (2.App.19)

Lactation (03,,1 and /max)

To estimate the energy the calf demands we first need to estimate its ideal growth

curve. We do this by considering how much energy it would need to grow following

a von Bertalanffy growth curve starting from the neonatal length 1N - 4.8 m and

trying to reach the maximum length observed for the species (lmax = 18 m).
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The length of an organism growing following the von Bertalanffy growth curve is:

IvB(t) = Imax - (Imax - IN) eCtH t. (2.App.20)

To evaluate (2.App.20), we need /vB. Solving (2.App.20) for /vB:

1 Im,-1(t)
0,B I In lmax I " (2.App.21)

t 1nax IN

Using data from Table 4 in Moore et al (2005) gives

/3 vB = 0.35. (2.App.22)

Note that the calculated /3 vB is a result of a fit of the von Bertalanffy growth curve

to data from Moore et al (2005), but the growth the calves are aspiring to (nIapx)

is 18 m, not 15 m observed by Moore et al (2005) and used in the calculation of

/3 vB. The shorter observed terminal length is a result of environmental conditions

experienced, which may be far from the ideal that a calf demands. We assumed

the data from Moore et al (2005) describe ideal conditions when calculating the

von Bertalanffy growth rate constant /3 vB describing early growth, but not when

calculating the asymptotic length of the calf, fvB(t). The estimate is appropriate for

our purpose because we use the formula to put an upper bound on energy requirement

of the calf during lactation, and only use the initial part of the growth curve. The real

flux of energy from the mother is constrained by the mother's own energy budget.

Reproductive efficiency (kR)

Neither gestation, nor lactation are completely efficient. Hickie et al. (2000), uses

the reproductive efficiency coefficient during gestation of 0.7, and Lockyer (1981)

estimates the combined efficiency of milk production and consumption of 0.72. Since

these efficiencies are similar, we use an efficiency kR = 0.7 for both.
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2.9.3 Pharmacokinetics (DLs and CI)

To include diffusion into the model, we need to estimate DLS. Aguilar and Borrell

(1991) determined concentrations of PCBs and DDTs in inner and outer strata of

baleen (fin and sei) whales. These strata correspond to structural lipid and lipid

storage compartments in our model.

Aguilar and Borrell (1991) show that the organochlorine levels in the structural

lipids are significantly higher than those in the energy storage lipids. Also, they show

that male whales have higher concentrations of toxicants in both types of lipids and

contribute the observed difference between sexes to the losses of toxicants during

reproduction.

The observation that both types of lipids differed between sexes suggests that

there is a mechanism (diffusion in our model) that equilibrates concentrations be-

tween structural and energy storage lipids. If there were no diffusion, females would

have similar outer but lower inner layer concentrations compared to males because

the structural lipids are, for the most part, formed before females mature sexually

and would, therefore, have undergone the same dynamics as that of a male. The

observation that the two types of lipids have significantly different concentrations of

toxicants within each gender means that the equilibration exists.

Equilibration may be slow, however. The whales examined by Aguilar arid Borrell

(1991) were captured during commercial hunt at the height of the whale feeding sea-

son. The newly acquired energy stores reduced concentrations of organochlorines in

the deep blubber. Since the outer, metabolically inactive layers, had higher concen-

trations, presumably experienced by the energy storage lipids during the starvation

season, we conclude that the two concentrations equilibrate on a time-scale longer

than 0.5 years. On the other hand, the variability of concentrations in structural

blubber among females was low, which suggests that the structural blubber equi-

librated with the changes experienced between two reproductive events (when the

toxicant loss occurs). This, in turn, suggests that the diffusion operates on time-
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scales shorter than 1.5 years.

Combining the two gives an estimate for the time-scale of the diffusion (DrsV2/3 )

of one year. Since all captured whales were adults, we can estimate DLS using the

typical volume V, of an adult whale:

DLS = 0.09 m- 2y- 1. (2.App.23)

Food is the primary vector of toxicant introduction in marine mammals. Right

whales feed primarily on zooplankton, such as krill and various species of Calanus

(Kann and Wishner 1995, Baumgartner and Mate 2003). There are many toxicants

we could focus on. Their concentrations and, consequently, intake from the environ-

ment depend on the location and the species of zooplankton right whales feed on. For

simplicity, we focus on polychlorinated biphenyls (PCBs), neglect all differences be-

tween different congeners of PCBs, and assume a constant total PCB concentration in

the prey of approximately 0.035 mg PCB/kg lipid, as measured in Calanus glacialis

(Borga and Di Guardo 2005). Weisbrod et al. (2000) did not observe significant

differences between total PCBs in the prey and in the fecal matter, suggesting that

right whales do not seem to preferentially retain PCBs (Weisbrod et al. 2000). This

implies that the input concentration C1 is equal to the environmental concentration

(C! = 0.035 mg/kg).

86



Chapter 3

Bioaccumulation and effects of

exposure in marine mammal

populations

We used to think that if we knew one, we knew two, because one and one are

two. We are finding that we must learn a great deal more about 'and'.

(Sir Arthur Eddington, astronomer)

3.1 Introduction

Food is necessary for growth and survival, but can have negative consequences if

it contains toxicants. Effects of toxicants can be short-term (acute) or long-term

(chronic) and generally increase with the amount of toxicants acquired. Directly or

indirectly, effects of exposure to toxicants reduce survival probability and/or repro-

ductive ability of individuals over their lifetime. This in turn reduces population

growth rate.

87



Lipophilic persistent toxicants such as polychlorinated biphenyls (PCBs) can bioac-

cumulate, increasing in concentration with time and creating potential for greater

harm (Aguilar and Borrell, 1994, Borga et al. 2004). Large amounts of energy trans-

ferred from marine mammal mothers to their young during gestation and nursing

facilitate transfer of toxicants between generations. Food scarcity increases the trans-

fer because mothers bioaccumulate more between reproductive events (see Chapter

2).

The transfer of toxicants is good for the mother because it reduces her burden,

but bad for the young because it exposes them to toxicant concentrations anl order

of magnitude higher than environmental (Lee et al. 1996). The exposure occurs at

a critical time in young mammal development and could reduce their life span and

reproductive ability (Reijnders 1986, de Swart et al. 1994, Lai et al. 2001, Schwacke

et al. 2002).

Maternal transfer could have a strong influence on toxicant exposure of marine

mammals and pose a risk to marine mammal populations in addition to the risk

from environmental exposure. Without transfer, mothers may accumulate greater

toxicant burdens and experience greater reduction in survival and reproduction as a

result. On the other hand, if there is maternal transfer, toxicant concentrations in

reproducing females are reduced but young are exposed to toxicants earlier, leading to

higher toxicant levels in males and immature females. Which of these two cases has a

greater effect on the population growth rate is unknown. In general, the effects of food

availability, maternal transfer and effects of exposure on patterns of bioaccunmulation

and the population growth rate are largely unknown.

The lack of knowledge about the effects of toxicants on marine mammal popula-

tions is partly due to difficulties in experimenting on marine mammals. Compared to

the usual animal models in toxicology (mice, rats and mink), marine mammals are

large, long-lived, have small populations, and are difficult to experiment on because

of space, moral and regulatory restrictions. Because of their large size, samples rep-
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resent a small fraction of body tissue, which complicates measurements because of

heterogeneities within tissues (Aguilar and Borrell 1991). Longevity makes it hard

to investigate long-term consequences of exposure, both on individuals and on pop-

ulations. Small population sizes make it hard to accumulate enough data to obtain

statistical significance. Whereas the other restrictions (space, legalities, ethics and

regulations) may not present a significant obstacle in experimenting on terrestrial

mammals, especially rodents, they do make it difficult to experiment on marine mam-

mals (but see Restum et al. 1998, Ross et al. 1996, Wells et al. 2005). Consequently,

experiments are rare, costly, and often executed with very low numbers of individ-

uals. Observing animals in the wild avoids some of the above mentioned problems,

but the data are often incomplete, and many possible causes (exposure to mixtures

of substances, environmental variability, harvesting, predation, disease, etc.) for a

particular effect requires a multivariate approach and, consequently, a large quantity

of data that are hard to obtain.

Theoretical models can help overcome some of these difficulties. They can guide

experimental research and reduce the necessary amounts of data. Two types of models

are often used for this purpose: pharmacokinetic models (Boon et al. 1994, Hickie et

al. 1999, Emond et al. 2005) that determine distribution of the toxicant throughout

the body, and energy budget models that determine energy intake and utilization and,

because energy and toxicants are connected, help drive the pharmacokinetic models

(Kooijman and van Haren 1990, Muller and Nisbet 1997, Hickie et al. 2000, Chapter

2). Models of toxicant action connect the distribution of the toxicant to the effects

on individuals.

Energy budget models come in two flavors: demand-side, where the energy intake

and its utilization is determined exclusively from the needs of the individual organism,

and supply-side models where both food availability and the needs of the organism

control energy intake.

To investigate the dependence of food availability and bioaccumulation patterns of
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an individual, one needs a supply-side energy budget model coupled with a pharnia-

cokinetic model. I presented such a model tailored to marine mammals in Chapter 2.

Here I present a population model capable of describing the processes of energy and

toxicant accumulation and utilization as functions of energy availability and environ-

mental toxicant concentrations. The population model is an individual-based model

(IBM) in which each individual grows according to the dynamic energy budget model

of a marine mammal presented in Chapter 2, adapted for the right whale, Eubal-

aena spp. Using the model, I investigate asymptotic (long term) as well as transient

(short term) effects of food availability, maternal transfer, and effects of exposure on

bioaccumulation patterns and population growth rate.

I first present a brief description of the individual model for growth and repro-

duction (Section 3.2.1), then introduce mortality to complete the IBM (Section 3.2.2)

and define effects of exposure in Section 3.2.2. In Section 3.3, I investigate the effects

of exposure on bioaccumulation and population growth rate, and investigate how

maternal transfer affects both. I discuss the results in Section 3.4.

3.2 Methods

3.2.1 Individual energy budget and pharmacokinetic model

The details of the model are explained in Chapter 2. Here I use the same basic

structure of the model, and the same parameters for the right whale (Table 3.4), but

a somewhat simplified model. The results of Chapter 2 suggest that structural lipids,

and biotransformation of toxicants do not play a significant role for the parameter

values corresponding to the right whale. This allowed me to simplify the model by

ignoring toxicant biotransformation and the structural lipids.

For lipophilic toxicants, i.e. those that preferentially associate with lipids, the

model of energy fluxes determines the toxicant fluxes in the organism. Figure 3-1

shows the structure of the simplified model: energy and toxicants enter from the
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environment (I) into the blood (B). From the blood, energy can be either stored into

lipid energy storage (L), or utilized for maintenance (M), reproduction (R) or growth

(G). The compartments and their state variables are listed in Table 3.1.

Maintenance takes precedence over any other energy expenditure: if it is not met,

the organism dies. The fluxes of energy from the environment into the blood (FBG),

from the lipid energy storage into the blood (FLB), from the blood into the lipid

energy storage (FBL), and from the blood to maintenance (FBM), reproduction (FBR)

and growth (FBG) determine the rate of change of energy in the blood compartment

(Table 3.2). Similarly, FBL and FLB determine the rate of change of energy in the

lipid energy storage compartment. Fluxes are defined in Table 3.3; for a detailed

description of reproduction see Chapter 2.

The transport of toxicants is linked to the transport of energy: when energy moves

from one compartment to another, it also transfers toxicants in proportion to the

concentration in the first compartment. Because I do not incorporate structural

lipids in the simpler version of the model, there are no diffusion terms (see Chapter

2 for discussion), and the transport of toxicants completely depends on the fluxes of

energy (Table 3.2).

The energy flux to reproduction is the same as in Chapter 2: energy transferred

from the mother to her calf is a result of tug-of-war between the desire of the calf to

grow, and the abilities of the mother to meet this desire. In Chapter 2, the energy

transfer to the calf determined the toxicant transfer as well. As a consequence of

losses in energy transfer (e.g. due to the cost of placenta and calf's assimilation

inefficiency), approximately 30% of toxicants lost by the mother are not assimilated

by the calf. The transfer can be further diminished by potential barriers to toxicant

transfer. The barriers can exist both during gestation (e.g. the placenta) and during

lactation (e.g. mammary glands, calf's digestive tract). Here I consider only barriers

during lactation. In this chapter, I manipulate the toxicant transfer to account for

the effects of these potential barriers.
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Figure 3-1: Individual model outline with pharmacokinetic (left) and energetic (right)
model compartments. For simplicity, we ignore toxicant biotransformation.

If the barriers have no effect, mothers lose the toxicants, and calves assimilate

them. I denote this mode of maternal transfer as M-C+, where M stands for mothers,

C for calves, and the quantifier behind the letter denotes the dynamics of the toxicant

due to maternal transfer: '-' for loss, '+' for gain, and '0' for no effect. If the

barriers allow the mother to lose the toxicant, but prevent the calf from assimilating

it, mothers lose and calves do not assimilate the toxicant (M-CO mode). If the

barriers are impenetrable to the toxicant, mothers do not lose, and calves do not

assimilate the toxicant (MOCO mode). Any other possible retention and assimilation

mode is a combination of these three basic ones, and any of its effects should be

within the range of effects of these three basic possibilities.
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Table 3.1: Compartments and state variables with units.

Compartment Energetics Toxicology'
I Environment f CI [mg/kg]
G Structure V[m 3] -

B Blood EB[kcal] CB[mg/kg]
L Lipid energy storage EL [kcal] CL [mg/kg]
R Reproduction - -

M Maintenance - -

'As in Chapter 2, our choices of units were guided by the literature A conversion factor connects
fluxes of energy ([kcal/y]) to fluxes of lipids ([kg/y]). The factor has units of kg lipid per kcal
(kg/kcal). We do not need to know its value, as it cancels out in the equations for rates of change
of toxicant concentrations (Table 3.2).

Table 3.2: Kinetics: rates of change of state variables.

Comp. Dynamics 2

1 ej =function of t (constant in our simulations)
C = function of t

G V=FBG

SEB = FIB + FLB - FBL - FBM - FBG - FBR

B , (CIFIB - CB (FBL + FBR + !EB) + CLFLB)

L -d EL = FBL - FLB
CL =-L_ (CBFBL - CL (FLB + -LEL))

Dynamics presented here differs from the one presented in Chapter 2 in three main details: in
this chapter, Ci may not be constant during simulations, there are no terms accounting for biotrans-
formation of the toxicant, and there are no fluxes to or from the structural lipids compartment (as
well as no dynamics for the structural lipids compartment).

Table 3.3: Equations for the energy fluxes.
Flux [kcal/y] Description

FIB = ImaxfV 2/3  intake of energy from environment into blood
FBM = nV energy spent on maintenance
FBG =[/GEB - FBM]+ energy utilized for growth3

FBL I 3LEB energy flux from the blood to the lipid storage
FLB - LkLEL energy flux from the lipid storage to the blood

FBR (F1 M + FGR + FpE) flux of energy to reproduction (see Chapter 2)

1 [X]+ is a shorthand notation for max(0, X).
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Table 3.4: Right whale parameter values.
Parameter Value Description

ENERGETICS

fOG 52 y- 1  rate of utilization of lipids in blood

!•L 365 y-1 energy conductivity
in 6.33. 106 kcal.m-3y- 1 cost of maintenance of a unit of V
g 4.4. 106 kcal/m- 3  energetic cost of growing structure
kL 0.02 equilibrium ratio constant of B and L
Imax 2.41. 107 kcal.m-2y- 1 energy acquisition rate per biometric area

REPRODUCTION
ERmin 1.4. 108 kcal minimum stored energy to start reproduction
Tgestation 1 y length of gestation
Tlactation 1 y length of lactation
a 1.25 m3 /y rate of growth during gestation

/3 vB 0.35 y- 1  von Bertalanffy rate constant
Vmax 52.5 m3  maximum V under ideal conditions
kR 0.7 efficiency of reproduction

3.2.2 Modelling mortality

To complete the population model, I need to account for mortality of individuals

and the effects of exposure. Mortality can be modelled as a stochastic process that

depends on s, the age of the individual (Cox and Oakes 1984, pp. 14): the probability

of dying in the time it takes to grow older by ds, given that the individual is alive

at age s, is equal to the product of ds and h(s), the age-dependent hazard rate. In

my model, this holds independently for all weaned individuals. When a pregnant or

nursing mother dies, her calf dies as well. If a calf dies, the mother simply stops her

flux of energy to reproduction (FBR = 0).

The hazard rate (h(s)) includes all contributions to mortality of an individual

except deaths of calves resulting from the death of their mother. I separate h(s)

into three positive parts: h1 (s), the intrinsic hazard rate due to damage accumulated

through metabolic work and aging, hC, the negative effects of hazardous compounds,
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and hE(S), external stressors such as gear entanglement and ship strikes:

h(s) = hi(s) + hc + hE(s). (3.1)

If hE is a function of time, it may be expressed as a function of age as s = t - t,

where t, is the time of conception. I assume hE(s) = 0 in this chapter.

From (3.1) and Kooijman (2000), the probability of having a life span T greater

than s is

Pr{T > s} =exp - h()d<}. (3.2)

The mean life span is

"TE = E[T] j Pr {T > s} ds. (3.3)

Intrinsic mortality

I account for two distinct sources of intrinsic hazard: aging (aging hazard), and

possible problems during early development (developmental hazard). I assume that

the aging hazard increases linearly with age. The developmental hazard rate typically

drops off exponentially with age, and is small by the time of weaning. The complete

intrinsic hazard rate is then:

hi(s) = 770 exp (-s/T,,o) + ?]IS, (3.4)

where ms is the aging, and r,0 exp (-s/T~lo) the developmental hazard. The expo-

nential time constant of the developmental hazard rate, T7,1, is T-,r, = (ge-statio, +

Tlactation)/2 = 1 y.

I calculate 0 and 71, using the life expectancy of female right whales from Fujiwara

and Caswell (2001). They found that the life expectancy of females declined from 50

years in 1980 to 20 years in 2000, and that the probability of the calf dying during

the last six months before weaning is 0.08. Taking the life expectancy for 1988 of 25
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years and fitting (3.3) gives 10 = 0.09966 y-', and q, = 0.00144 kg.mg-1 y-'. Here

I assumed that calf mortality is conditioned on mother's survival, and that the life

expectancy of 25 years is a consequence of the intrinsic hazard only.

Effects of exposure - mortality from toxicants

Toxicants of ecological interest are those that affect survival and/or reproduction

(Kooijman 2000). They can influence mortality and reproduction directly and in-

directly by influencing parameters of the model. For example, an increase in he

directly increases mortality. Similarly, an increase in reproduction energy (E[ n,,i

and a decrease in reproductive efficiency (kR) directly decrease reproduction. Toxi-

cants can indirectly affect reproduction and mortality through effects on other model

parameters (Muller and Nisbet 1997) such as foraging ability (f), assimilation effi-

ciency (Imax), maintenance costs (m), and costs of growth (g). In this chapter, I only

implement direct effects of exposure on mortality through he, but effects on any and

all parameters could be implemented using a similar approach.

Traditionally, direct effects on mortality are implemented through the hazard rate

as a consequence of the concentration of toxicants in the organs of an individual

(Kooijman 2000, pp. 204-206). I assume the concentration in the blood compartment,

CB, reflects the effective exposure of the organism, because it captures both short-

term (acute) exposure following an ingestion of the toxicant, as well as the long-term

(chronic) exposure resulting from bioaccumulation. From the DEB theory (Kooijman

2000), the hazard rate from the accumulated toxicant is

he = hc(CB) = 17 [CB - CNE]+, (3.5)

where the no-effect concentration, CNE, is the threshold concentration below which

the toxicant has no effect, and the toxicity slope ,q characterizes the increase of the

hazard for a unit increase of toxicant. Smaller CNE and higher q imply greater toxic
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effects.

I included only effects from the toxciants in the blood, but toxicants associated

with structural or energy storage lipids could have impact on the individual as well.

One could account for such effects by replacing CB with CL or Cs, or adding terms

with CL and CS to hc.

3.2.3 Characterizing bioaccumulation

To investigate patterns of bioaccumulation, first I have to characterize it, both on

individual and population level. In this model, CB is a natural choice for individual-

level measure of bioaccumulation because CB determines effects of exposure. It is not,

however, a good population-level measure because of differences between individual

patterns of bioaccumulation arising from differences in age, reproductive history, and

the initial maternal transfer between individuals.

I use CB, the average CB among all individuals, and Var(CB), the variance of

individual CB among all individuals, as population-level indices of bioaccumulation.

These indices, calculated for any given time, convey information on overall effects

of exposure at that time: CB drives the overall effects of exposure, while Var(CB)

describes the variability of these effects. The asymptotic values and trends of CB and

Var(CB) describe patterns of bioaccumulation for a given exposure scenario.

When a new toxicant is introduced into the environment, or an established one

is regulated, the indices of bioaccumulation change. If a toxicant is introduced in

a pristine environment, the environmental toxicant concentration C1 increases and

CB must increase because of bioaccumulation. If a toxicant is in the environment

long enough, CB approaches the asymptotic value because accumulation of toxicants

through assimilation equilibrates with their export through mortality and inefficien-

cies of reproduction. If such a toxicant is regulated, C1 decreases, assimilation de-

creases while export (at least initially) stays the same, and CB must decrease as well.

Eventually, CB approaches an asymptotic value again.
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To determine the rates of change of CB in response to changes in C1, I approximate

the inherently complex system of all individuals and their interactions which deter-

mine the dynamics of CB with a linear system. Then CB approaches the asymptotic

value exponentially with the intrinsic rate of change F:

dCBd -= CB2 - FCB, (3.6)

where F is the intrinsic rate of change of 0CB, and 0CB2 is the new asymptotic value of

CB. The general solution CB(t) of (3.6) at time t after the change in C, is:

CB(t) 0= B2 - (CR2 - UOB) exp(-rt), (3.7)

where CB, is the asymptotic CB before the change in C1.

In principle, F could depend on whether CB is increasing or decreasing, and even on

the asymptotic values of CB. To account for the possibility that F depends on whether

CB is increasing or decreasing, I differentiate between assimilation and depuration

rates. The assimilation rate of a toxicant into a population, F1 , is the rate of increase

of CB upon an instantaneous increase in Cf. The depuration rate of a toxicant from a

population, FD, is the rate of decrease of an established toxicant from the population

following a sudden and complete disappearance of the toxicant from the environment.

The assimilation and depuration rates (F1 and FD) describe the transients of CB: the

greater the rates, the faster CB approaches its new asymptotic value.

3.2.4 The individual-based model

The simulated population is made of individuals who independently react to the

environment. For every individual, I separately solve the individual model presented

in Sections 3.2.1 and 3.2.2. The only interaction between individuals is the one

between the mother and her calf during pregnancy and nursing. To save memory, the

program does not keep track of dead individuals.
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Every individual receives a unique ID at conception to help track maternity, and

becomes female with a probability of 50%. I record all the state variables for every in-

dividual, and a number of population-level data: simulation time, population size, age

distribution, average CB, the variance of CB, and the total burden in the population.

When a female conceives for the first time, I record the her time of conception and

her ID. Whenever a female that has not reproduced dies, I record her time of death,

time of birth and her ID. These data greatly simplify calculations of all statistics of

interest during post-processing.

Numerical methods

Projecting an individual forward in time requires solving the equations in Table 3.2.

These equations can be written in a vector form; if individuals were completely inde-

pendent, the same equations could project the population vector forward in time.

However, in mammal populations calves depend on mothers for energy transfer.

I needed to modify the vector equations to accommodate the dependence. I used the

array indexing feature in Mathworks Matlab to achieve this (see Appendix B).

Mortality and reproduction are discontinuous processes determined by switches

(e.g. reproduction starts only when EL > ER) and using Matlab's routines is im-

practical. Therefore, I wrote a Runge-Kutta solver (myRunge.m) that evaluated the

function myWEB.m to determine the rate of change of state variables, and then called

the function handleY.m at the end of each time-step to evaluate the switches and han-

dle the mortality and reproduction. I used a fourth order Runge-Kutta method with

a time step of 0.002 y. The chosen time step was short enough to accommodate the

largest rate in the model (/OL' = 0.0027 y).

Most figures in Chapter 2 and 3 require multiple simulations. For example, Figure

3-8 in section 3.3.2 required nine simulations; Figure 3-2 outlines the necessary steps.

There are three main programs for each set of simulations: the control program

that changes the parameters (run_Clscenarios.m), the program that executes a simu-
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lation for one set of parameters (run_WEB_once.m), and the program that draws the

figure

(draw_CIscenarios.m). The code for the example in Figure 3-2 is in the Appendix

B. The code contains a short description of every procedure, and limited comments

at crucial points.

Initial population

To minimize transients, I used an initial age distribution as close to the stable one as

possible by using the survival-to-age distribution (3.2) to create my initial population.

For moderate and high food availability (f 0.9, 0.99), the population consisted of

300 individuals. For low food availability (f 0.81 ), the initial population consisted

of 15, 000 individuals to allow for convergence before extinction.

Due to problems of coupling a fetus or a nursling with the right mother in a

randomly generated initial population, I generated the initial population using only

weaned individuals. To determine the state variables assigned to each individual, I

used individual data for female and male right whales from Chapter 2 as reference

individuals: the state variables of each initialized individual are set equal to tile state

variables of the reference individual at the same age.

This method is of initialization does not give a stable age distribution. It ignores

reproduction, and biases the initial distribution towards older individuals because

there are no calves, and results in an initial surge of reproduction because some moth-

ers that would otherwise be preoccupied with reproduction can accumulate energy

and reproduce sooner.

Therefore, transients are inevitable. To minimize their impact on the calculation of

indices of bioaccumulation, population growth rate and reproductive probability, I use

data generated after the transients subsided. Visual inspection suggested that, when

C1 is constant, indices of bioaccumulation converge faster than the age distribution.

Hence, I used the convergence of the age distribution as a signal that transients
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main program solveWEB.m

Initialize model
init p.m

No t1:dt:max

W Set parameters 4
set f(t) and C,(t)

Initialize run Draw
Mit_f.m draw_Clscenarios.m

Runge-Kutta step

Load initial myRunge.m

conditions

Run
runwebonce.m

handleY.m myRunge.m runWEBonce.m

Evaluate the Initialize file
Kill model for all handles

Runge-Kutta steps
myWEB.m

Reproduce Solve the model

Handle switches solveWEB.m

handleY.m

Record 
return

return

return

Figure 3-2: Flowchart of the main steps in the simulations.
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Figure 3-3: Measuring the convergence of the age distribution. The age distribution,
filtered age distribution and convergence score (Conv.) shown at t = 1, t = 15, t = 30
and t = 60 for f = 0.9 and r; = O.

subsided.

Calculating convergence of the age distribution

For each year in the model run, I smoothed the age distribution by filtering it with

a five-year age span (Figure 3-3). I compared the filtered age distributions between

years to estimate convergence. I scored the convergence of the distribution by cal-

culating the 1-norm the difference between the smoothed age distributions in two

consecutive years. Distributions converged enough for the purposes of calculating the

population growth rate when the score fell below 0.05. Complete convergence is not

critical to the results because I averaged the observations from the time when the

score fell below 0.05 to the end of simulation, or to the time when population size fell

below 80 individuals.
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Calculating the growth rate

I use the population growth rate as an asymptotic (long-term) population-level mea-

sure of effects of toxicants. Thus I observe population size only after the distribution

converges, assuming that then the population grows exponentially:

N(t) = Noexp(rt), (3.8)

where r is the population growth rate. Rearranging and taking a natural logarithm

of (3.8) gives

In (N(t)/No) = rt, (3.9)

which is a linear function of t. The left-hand side of (3.9) is one of the outputs of the

model. I fit 7 using linear regression.

Calculating the probability of reproducing at least once

I calculate the probability that a female reproduces at least once by keeping track of

all newly conceived fetuses and counting how many reproduced before dying. I record

a unique ID of all newly conceived female fetuses, and record when they reproduce

for the first time, or when they die. The probability of reproduction is then the ratio

of females that reproduced and the total number of females born at the same year.

3.3 Results

I use the population growth rate as an indicator of long-term consequences of expo-

sure. I use the probability that female reproduces at least once as a measure of the

effects of toxicants on a shorter, individual time scale.

In this section, I first investigate effects of exposure on bioaccumulation, popula-

tion growth rate and reproductive probability. Next, I investigate effects of maternal

transfer on bioaccumulation and effects of exposure.
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Figure 3-4: Outputs of the population model during one simulation. Left: population
size (top) and reproductive probability (bottom). Right: C_ (top) and Var(C1 3 )
(bottom). Population growth rate, reproductive probability, C1 3 and Var(CI?) have
been estimated using observations after t = 28 (red line). Simulations in this figure
are for f = 0.9, q = 0.05 kg.mg- 1 Y- 1, and CNE = 0.5 mg/kg.
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I simulate the IBM for three food availabilities (f) and a number of toxicities of

the toxicant (r; and CNQE). I observe effects of these parameters on bioaccumulation,

effects of exposure, population growth rate, and reproductive probability. Figure 3-4

shows a typical simulation.

3.3.1 Effects of exposure on bioaccumulation and population

growth rate

The effect of toxicants on individuals is determined by the toxicant action model (3.5).,

parameterized by qj and CNE. These parameters differ between toxicants: higher

,r and lower CNE imply higher potency. To investigate how this difference affects

populations, I varied 71 and CNE and observed population growth rate, reproductive

probability, and average CB and its variance.

I varied ri between no effect and a large effect, q7 E [0, 0.05,0.1, 0.5, 11 kg.mg-'y-'.

I chose CNE so that it falls beneath, at, and above the expected terminal female CB

of 0.3 - 0.4 mg/kg observed in Chapter 2, CNE E [0.25, 0.4, 0.5] mg/kg.

Results from Chapter 2 suggest that food availability affects bioaccumnulation of

individuals. To investigate how it affects the populations, I repeated the simulations

for three values of f: f, = 0.81, f2 = 0.9 and f3 = 0.99. Food availabilities f2 and f3

correspond to those experienced by North Atlantic and southern right whales; f, is

10% lower than f2.

Figure 3-5 shows the results. As expected, the population growth rate and the

probability of successful reproduction is smaller for more potent toxicants for all

values of f (upper and lower left plots). The effect is more pronounced for lower food

availability due to higher CB associated with lower f (upper right plot).

When f is low, it takes a longer time to mature and recover from a reproductive

events. During that time, individuals have to maintain their structure and bioac-

cumulate toxicants as a result. Hence, longer times to maturity and longer calving

intervals imply higher CU. The effects of exposure reduce average CtB and its variance
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Figure 3-5: Effects of exposure on population growth rate and bioaccumulation. Left:
population growth rate (top) and reproductive probability (bottom). Right: average
CB (top) and variance of CB (bottom) for three food availabilities (f, = 0.81, f'2 = 0.9

and f3 = 0.99), three values of CNE (C1 = 0.25, C2 = 0.4 and C3 = 0.5) and a range
of q (see text for description and parameter values). The plotted values are listed iii
the Appendix A.
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because individuals with higher CB are preferentially removed from the population.

When r7 = 0, there are no effects of exposure for any value of CNE, and the

toxicant behaves like a passive tracer. The resulting population growth rates reflect

the maximum potential growth rate for a given f. This implies that the North Atlantic

right whale population (f = 0.9) has the potential to increase about 4% annually,

while the southern right whale population (f = 0.99) has the potential to increase

about 8% annually.

3.3.2 Effects of maternal transfer on bioaccumulation and

effects of exposure

The three basic modes of maternal transfer mentioned in section 3.2.1 are complete

transfer (M-C+), mother's loss (M-CO), and no-transfer (MOCO) modes. These

modes by definition affect individual exposure and bioaccumulation. Transfer (M-C+)

and no-transfer (MOCO) modes are opposites, and comparing their effects can provide

an insight into the effects of maternal transfer. Figure 3-6 compares the long-term

effects of maternal transfer by showing differences in population growth rate, repro-

ductive probability, and measures of bioaccumulation with (M-C+) and without

(MOCO) transfer of toxicants.

The maternal transfer increases GB by about 40% - 50% (upper right plot). When

transferring toxicants, mothers reduce their CB, but increase CB of calves at weaning

as a result. The increase of CB at weaning on average trumps the reduction due

to transfer. Recycling of toxicants by passing them to the next generation through

maternal transfer further increases GB. The 30% loss of toxicants during reproduction

due to discarded materials (e.g. placenta) and fecal excretion of the nursling is not

sufficient to make up for the recycling.

When there is no maternal transfer, individuals start without any burden, and

consequently bioaccumulate less before their first reproduction. When toxic effects are

important (high rj, low CNE), the probability of reproducing before dying is, therefore,
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Figure 3-6: Effects of maternal transfer on population growth rate and bioaccumula-
tion. Left: the change in population growth rate (top) and the decrease in reproduc-
tive probability (bottom) due to maternal transfer. Right: proportional increase in
average CB (top) and decrease in variance of CB (bottom). All plots drawn for three
food availabilities (f, = 0.81, f2 = 0.9 and f3 = 0.99), three values of CNE (C 1 = 0.25,
C2 = 0.4 and C 3 = 0.5) and a range of q7. The model is stochastic because mortality
is stochastic, so small variations between simulations are to be expected. The plotted
values are listed in the Appendix A.

108



1.5 ...
female M-C+S....male M-C+

female MOCO
....... male MOCO

E

mJ

CO)

0.5

0
5 10 15 20 25 30 35 40

Age [y]

Figure 3-7: Bioaccumulation with and without maternal transfer. Mothers that do
not transfer toxicants have much higher C1 then either males or females that transfer
toxicants. Energy demands of reproduction further increase CG3 of mothers that do
not transfer toxicants.

higher with no maternal transfer (Figure 3-6, lower left plot). As f decreases and the

toxic effects increase (higher 77, lower CNE), effects of exposure become important.,

and the maternal transfer reduces the probability of reproducing by up to 50%.

Despite decreasing probability of reproducing and increasing GB for all toxicities,

toxicant transfer may increase population growth rate for some combinations of food

availability and toxicity. For f = 0.99, maternal transfer increases the population

growth rate for all toxicities investigated. For f = 0.91, maternal transfer increases

the growth rate except for the highest toxicity (see table 3.10 in the Appendix A). If
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the maternal transfer increases the population growth rate, it increases it more when

toxicity is higher.

While males who did not assimilate toxicants during nursing always have lower

CB than males who did, the reverse is true for females after a few reproductive

events (Figure 3-7): even though they start from CB of almost zero and suffer smaller

initial mortality, mothers who do not transfer toxicants to their calves reach the C11

of mothers that transfer their burden by the time they have a second calf. During

reproduction, mothers that do not transfer toxicants drastically reduce their energy

storage, but not their toxicant burden. If they reproduce more than twice, this

dramatically increases their CB (Figure 3-7) until they restore energy reserves.

The resulting increases in CR3 of mothers that do not transfer toxicants increase lic

and shorten their reproductive lifetime, which in turn reduces the population growth

rate. The reduction of the population growth rate is more significant as toxic effects

increase.

On the other hand, if the population growth rate is small, maternal transfer further

decreases it. Then, females reproduce only a small number of times in either maternal

transfer mode, and the adverse effects of no maternal transfer cannot manifest.

Hence, if the population experiences food abundance, toxicants that are mater-

nally transferred can have positive impact on the population; if the population is

already food-stressed, maternally transferred toxicants put them in further jeopardy.

I expect that the increase in the population growth rate due to maternal transfer

is more significant in species with longer reproductive span and more reproductive

events because in such species females lose more reproductive events if they die early.

The increases of the variance of CB (Figure 3-6, lower right plot) is indicative

of the sharp increase in CB of females that do not transfer toxicants. This is more

pronounced for lower values of f. When there is no toxic effect (r; = 0), the variance

without maternal transfer is greater by about 5 times for f = 0.81, 4.3 times for

f = 0.9, and 2.5 times for f = 0.99 than the variance with the maternal transfer.
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Increasing the potency of the toxicant decreases the variance (as well as the difference

of the variance) because it preferentially removes individuals with high burdens from

the population.

Transients: assimilation (F1 ) and depuration (17D) rates

To further investigate effects of maternal transfer on bioaccumulation, I compared

transients of average C13 and its variance in all three food availabilities for three

modes of maternal transfer (M-C+, M-CO and MOCO). I modeled the two scenarios

that define F, and FD corresponding to introduction and regulation of a toxicant.

The first, "step up" scenario models a sudden introduction of the toxicant into

the environment: C, changes from zero to 0.035 mg/kg 40 y into the simulation. In

the second, "step down" scenario, I model a removal of a toxic substance from the

environment: C, drops from 0.035 mg/kg to zero at 40 y into the simulation. I did

not incorporate effects of exposure (rq = 0).

Figure 3-8 shows the average C13 and its variance for f = 0.9. In both scenar-

ios, the average toxicant concentrations are highest when mothers transfer toxicants

(M-C+) because of the recycling of toxicants due to maternal transfer. When moth-

ers lose but calves do not assimilate toxicants (M-CO), the bioaccumulation is least

prominent because the toxicant is exported from the population at a high rate. The

no-transfer mode (MOCO) falls between the other two modes. I observed the same

patterns for the other two values of f (not shown).

I measured F1 and FD for all food availabilities and modes of transfer (Figure 3-9).

To calculate FI, I fitted the CB3(t) observed in the step up scenario at time t after the

introduction of toxicants to (3.7) for C 3~1 = 0, and CB 2 = a:

CB (t) = a (1 - exp(-F It)). (3.10)

To calculate FD, I fitted the CB(t) observed in the step down scenario after the
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Figure 3-8: Transient response of bioaccumulation to changes in CI. C•3 (upper left
plot) and Var(CB) (lower left plot) for step up, and CU3 (upper right plot) and Var(C13 )
(lower right plot) for step down scenarios of changes in C1 for three maternal toxicant
transfer modes (MOCO, M-CO, M-C+), see text for details.
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regulation of a toxicant, to (3.7) for CB1 = a, and CB2 = 0:

C1(t) = aexp(--FDt). (3.11)

I estimated a from the asymptotic GB when CI was greater than zero, and fitted both

rates using linear regression.

The assimilation and depuration rates increase with food level. For the North

Atlantic right whale, the depuration rate is 0.06 y- 1 assuming maternal transfer

(M-C+), and 30% higher if the mother retains the toxicant (MOCO). As observed

in Section 3.3.1, the asymptotic CB decreases as f increases. The asymptotic C7 is

about 2.3 times larger for M-C+ maternal transfer mode than for M-CO mode, and

about 1.5 times larger than for the MOCO mode. The difference between M-CO and

MOCO modes is larger than the previously observed 40% increase (Figure 3-6). This

is probably because I did not include effects of exposure in the simulations which

tend to decrease C13 by preferentially removing individuals with high C13 from the

population.

The assimilation rates are surprisingly similar to depuration rates for every food

level and maternal transfer mode. Both types of rates increase with food level and

depend on the mode of maternal transfer. All individuals in the M-CO and MOCO

mode undergo the same bioaccumulation scenario, which leads to faster transient

responses of CU3 to changes in C, compared to the responses M-C+ mode, in which

recycling slows the transients.

3.4 Discussion

Understanding how maternal transfer of toxicants affects bioaccumulation and how

the resulting exposure affects population growth rate is a necessary step toward better

management and regulation of toxicants. To investigate these linkages, one has to be

able to observe population growth rate and bioaccumulation as a function of mater-
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nal transfer, energy availability, environmental toxicant concentration and effects of

exposure. To this end, I developed a population model based on the individual model

presented in Chapter 2. My most important results were:

1. Higher toxic effect (higher q, lower CNE) decreases the average concentration

and variance of toxicants in the blood due to preferential removal of individuals

with high concentrations of toxicants.

2. Maternal transfer decreases probability of reproducing at least once.

3. Maternal transfer increases population growth rate of right whales; the increase

is greater for higher toxic effect.

4. Transient responses to changes in environmental toxicant concentrations can be

described by assimilation and depuration rates.

5. Assimilation rate and depuration rate of a toxicant for a population in a specific

environment are equal for practical purposes. Recycling of toxicants through

maternal transfer reduces the rates.

6. Energy availability allows for North Atlantic right whale population growth of

4%, and southern right whale population growth of about 8% annually.

7. Depuration rate of lipophilic toxicants from a right whale population (neglecting

biotransformation) is 0.06 - 0.09 y-.

Even though I used a model adapted to the right whale, the approach - and

most of the results - are applicable to other marine mammals. For example, results

1 and 2 are a consequence of effects of exposure, and not specific to right whales.

If a high concentration of toxicants in the blood (CB) reduces survival probability,

individuals with higher CB are more likely to die and thereby reduce the average

toxicant concentration. Similarly, individuals that have not received any burden
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from their mothers have smaller CB, are more likely to live, and are consequently

more likely to reach a reproductive age.

The same mechanism may be responsible for the somewhat surprising result 3:

mothers that do not transfer the toxicants to their young will live shorter and repro-

duce less. The effect on the population growth rate is greater when females reproduce

often, and reproduce many times. This implies that species with long reproductive

life span and frequent reproductive events are better off transferring toxicants to their

young, while the opposite is true for those with a short reproductive life span.

I investigated transients for three modes of maternal toxicant transfer. The tran-

sient response rates exhibit same pattern of dependence on food availability when

effects of toxicants are ignored. The patterns may, however, depend on the effects of

exposure. I plan to investigate this in the future.

The results have implication for regulation of toxic substances. First, the fairly

slow rates of assimilation (F[) imply that short-term monitoring programs may not

be sufficient to estimate long-term bioaccumulation patterns of a toxicant. Second,

because rates are so slow, toxicant may not have reached its asymptotic value when

C1, the toxicant concentration in the environment decreases. In that case, CB may

still increase if the asymptotic value of CB for the new C, is higher than C13 at

the time of regulation. Third, the increase in CB due to maternal transfer may have

significant consequences for highly toxic substances, and should be taken into account

when regulating persistent toxicants that can be transferred during reproduction. For

example, CB increases by 40 - 50% in right whales due to maternal transfer; this

increase exposure may be fatal. Single-generation studies, which are used almost

exclusively in legislature (U.S. EPA 1996), do not take this increase into the account

and may, therefore, overestimate 'safe' environmental toxicant concentrations (C1 ).

Because of very slow depuration rate of maternally transferred persistent toxicants

from populations, even a quick regulation of the toxicant may not help alleviate

adverse effects once they are noticeable. Therefore, it is important to account for the
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possible increase in average CB when relying on single-generational studies.

Variance of CB is important as well: even if the CB is small, large variability

suggests that CB of many individuals may be large. In some cases, this may not be

acceptable.

Our estimate for southern right whale population growth potential of 8% annually

(result 6) is only slightly larger than their measured growth rate of 7% annually (Best

et al. 2001). Such a small difference suggests that the southern right whales do not

experience many sources of mortality in addition to their natural mortality. The

estimate is, however, based on the right whale life expectancy of 25 years; southern

right whales may have a longer life expectancy. To correctly asses the potential

population growth rate, I would need to adapt the model to the southern right whales.

The estimated potential for North Atlantic right whale population growth rate of

4% is in stark contrast with the observed, slightly negative one (Fujiwara and Caswell

2001). The difference in potential population growth rates between North Atlantic

and southern right whales suggests that food availability plays a significant role in

North Atlantic right whale population growth. The unrealized fairly large potential

North Atlantic right whale population growth rate of 4%, on the other hand, suggests

that stressors other than the lack of food, such as effects of toxicants and ship strikes,

prevent North Atlantic right whale population recovery.

Authors have suggested that sublethal exposure to toxicants may be a contributing

reason for the North Atlantic right whale decline (Knowlton et al. 1994, Angell 2005).

The depuration rate of persistent toxicants from the right whale population (result

7) is very slow. This implies that any regulation of possibly harmful substances can

help the right whales only in the long run. Therefore, controlling pollution - while

beneficial in the long run - is not likely to mitigate effects of persistent toxicants on

North Atlantic right whales in the short run.

Results in this chapter rely on the assumed toxicant action model; results may

be different for other toxicant action models. For example, toxicants can also affect
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reproduction (e.g. Addison 1989, Reijnders 1986). Both direct and indirect effects

of toxicants on reproduction can readily be incorporated in the model. Direct effects

include an increase in energy required for reproduction (ER) or decrease in reproduc-

tive efficiency (kR). Increasing maintenance costs (in) or reducing foraging ability

(!max) could have indirect effects on reproduction because it reduces energy available

for reproduction and increases time needed to recuperate from a reproductive event.

All of these effects may increase bioaccumulation and induce further negative effects.

I assume that individuals are equally susceptible to toxicants in all life stages,

but susceptibility to toxicants can be life-stage dependent. Many toxicants influence

development (e.g. Reijnders and Brasseur 1992, Guo et al. 2004) and pre-pubescent

individuals more susceptible to toxicants than already developed individuals. In that

case, maternal transfer could have a much greater negative impact on population

growth rate than currently predicted by my model. Likewise, older individuals may

be more susceptible. In that case, mothers that retain the toxicants may succumb

to toxicants even sooner than in the current model. This would also reduce the

population growth rate. Using the model presented in this chapter, one can change

the effects of exposure to investigate how food availability and life-stage dependent

susceptibility to toxicants interact to affect population growth rate.
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3.6 Appendix A - values used in figures

3.6.1 Figure 3-5

Table 3.5: Figure 5: Growth rate
Growth rate

1 -0.29 -0.18 -0.12 -0.06 0.03 0.04 0.06 0.08 0.08
0.5 -0.17 -0.12 -0.08 -0.00 0.04 0.04 0.07 0.08 0.08
0.1 -0.05 -0.03 -0.02 0.03 0.04 0.04 0.08 0.08 0.08

0.05 -0.02 -0.02 -0.01 0.04 0.04 0.04 0.08 0.08 0.08
0 -0.00 -0.00 -0.00 0.04 0.04 0.04 0.08 0.08 0.08

[CNE 0.25 0.41 0.5 0.25 0.4 0.5 0.25 0.4 0.5
f 0.81 0.9 [ 0.99

Table 3.6: Figure 5: CB
17 _ CB
1 0.51 0.56 0.60 0.33 0.35 0.37 0.25 0.26 0.26

0.5 0.57 0.61 0.64 0.35 0.36 0.37 0.25 0.26 0.27
0.1 0.71 0.70 0.70 0.37 0.38 0.38 0.26 0.27 0.27

0.05 0.72 0.71 0.70 0.38 0.38 0.38 0.27 0.27 0.27
0 0.74 0.74 0.74 0.38 0.37 0.39 0.27 0.27 0.27

CNE 0.25 0.4 0.5 0.25 1 0.4 1 0.5 j 0.251 0.4 0.5

f 0.81 [ 0.9 099
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Table 3.7: Figure 5: Reproductive probability
Reproductive probability (%)

1 1 11 22 41 78 82 77 83 84
0.5 14 26 41 61 80 82 79 83 82
0.1 59 66 71 77 81 82 82 83 83
0.05 70 72 75 78 82 82 83 83 83

0 79 79 79 82 82 82 83 83 83

CNE 0.25 0.4 0.5 0.25 0.4 0.5 0.25 1_0.4 0.51

f 0.81 0.9 0.99

Table 3.8: Figure 5: Var(CB)
Var(CB)

1 .024 .029 .032 .017 .017 .018 .011 .012 .013
0.5 .029 .034 .036 .018 .018 .019 .012 .013 .014

0.1 .045 .044 .044 .022 .022 .022 .014 .014 .015

0.05 .051 .047 .047 .022 .023 .024 .014 .014 .015
0 .055 .056 .056 .025 .026 .026 .016 .016 .016

CNEJ 0.25 0.4 0.5 0.25 0.41 0.5 0.25 0.4 0.5

f J 0.81 0.9 0.99
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3.6.2 Figure 3-6

Table 3.9: Figure 6: Influence of maternal transfer on the population growth rate
Percent difference in population growth rates

1 -0.209 -0.120 -0.077 -0.051 0.014 0.015 0.014 0.010 0.08
0.5 -0.118 -0.083 -0.050 -0.006 0.016 0.012 0.012 0.009 0.003
0.1 -0.024 -0.016 -0.009 -0.000 0.005 0.006 0.002 0.001 0.001

0.05 -0.011 -0.007 -0.004 0.001 0.002 0.004 0.002 0.003 0.001
0 0.000 -0.001 -0.002 0.000 -0.001 -0.001 -0.001 -0.001 -0.001

cNE{ 0.25 0.4 0.5 0.25 0.4 0.5 0.25 0.4 0.5
f 0.81 0.9 0.99

Table 3.10: Figure 6: Influence of the maternal transfer on 013
Percent difference in CB

1 0.49 0.43 0.45 0.47 0.47 0.46 0.43 0.42 0.41
0.5 0.50 0.48 0.47 0.47 0.44 0.45 0.42 0.41 0.41
0.1 0.48 0.46 0.46 0.45 0.44 0.43 0.41 0.41 0.41

0.05 0.46 0.44 0.44 0.43 0.44 0.42 0.41 0.40 0.40
0 0.40 0.41 0.41 0.42 0.42 0.41 0.40 0.40 0.40

CNE 10.251 0.4 [ 0.5 [0.25 [0.4 j 0.5 10.251 0.4 1 0.51
f j 0.81 0.9 0.99
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Table 3.11: Figure 6: Influence of maternal transfer on the reproductive probability
?I _ Difference in reproductive probability (%)

1 -70.3 -60.1 -52.5 -31.3 2.4 1.4 2.2 0.7 0.3
0.5 -55.7 -48.1 -35.5 -16.2 1.8 1.2 2.3 2.5 0.1
0.1 -16.0 -11.5 -6.7 -2.1 1.2 1.0 0.1 0.4 0.8
0.05 -8.3 -5.4 -2.9 -2.1 0.2 2.2 0.8 -0.1 -0.4

0 -0.4 0.2 -1.0 0.3 1.7 0.1 -0.6 -0.6 -0.6

CNE J0.251 0.4 1 0.5 0.25 10.41 0.5 0.2510.4 0.5

f 0.81 0.9 0.99

Table 3.12: Figure 6: Influence of maternal transfer on the variance of CB

___ _Difference in Var(CB)

1 -0.01 -0.03 -0.04 -0.02 -0.03 -0.04 -0.01 -0.01 -0.01
0.5 -0.04 -0.04 -0.06 -0.03 -0.04 -0.04 -0.01 -0.01 -0.01
0.1 -0.11 -0.12 -0.12 -0.05 -0.06 -0.06 -0.02 -0.02 -0.02

0.05 -0.13 -0.15 -0.16 -0.07 -0.07 -0.07 -0.02 -0.02 -0.02
0 -0.23 -0.23 -0.23 -0.09 -0.08 -0.09 -0.02 -0.02 -0.02

jCNE 0.25 _0.4 0.5 [0.25! 0.4 0.5 10.25] 0.4 10.5]

1 f 1 0.81 0.9 J 0.99
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3.6.3 Figure 3-9

Table 3.13: Figure 9: Asymptotic CB3 .
Asymptotic CB
_o,,d f 1_ 0.81 0.90 10.99

M-C+ 0.70 0.38 0.27
M-C0 0.30 0.17 0.11
MOCO 0.48 0.25 0.16

Table 3.14: Figure 9: Introduction rate of the toxicant into the population.
Assimilation rate (F11 )
M7d-\f 7 0.81 0.90 10.99
M-C+ 0.036 0.064 0.084
M-CO 0.074 0.110 0.171

MOCO 10.056 0.090 0.128

Table 3.15: Figure 9: Depuration rate of the toxicant from the population.
Depuration rate (FD)

Mod\ II 0.81 10.90 ] 0.99
M-C+ 0.031 0.062 0.087
M-CO 0.084 0.127 0.154
MOCO 0.062 0.093 0.124
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3.7 Appendix B : Model code

% INITP.m

% Initializing the model: everything relevant is stored into the structure

% p which is transferred to all functions.
warning off MATLAB:DivideByZero
p.maxAge = 70 ;
p.initPopSize = 300
% for filtering
p.filterWindow = 5
p.filterArr = ones(l,p.filterWindow)/p.filterWindow
% control of maternal transfer; be careful, b/c you can't have

% p.maternalTransfer=O and p.maternalTransfer2pups = 1.

p.mothersDump = 1 ; 7 do mothers dump toxicants?
p.pupsReceive = 1 ; % do pups receive the toxicant?

p.eSO = 1500 ; % energy density of the structure compartment
p.L2V = 0.009 ;
p.Lmax = 18 ; % the 'want' size
p.LInf = 16

p.KI = 1 ; %effectively not using KI b/c we are plotting eI/KI

p.dt = 0.002 ; %time step for runge-kuta
p.reportStep 10

p.plotStep = 1

% ENERGETICS

p.betaG = 52 ; %constant of prop. for utiliziation of bloods energy density

%into growth (V and V in the calculation of the flux cancel)
p.betaL = 365 ; % energy conductance

% USED TO BE!
%p.betaL = 356 ;
p.M = 6.33E6 ; % cost of maintenance per volume of structure

p.G = 4.4E6 ; % TEMP
p.Imax = 2.41E7 ;
p.kL = 0.02 ; % the ratio of energy in B and L

%DEPENDENT - ali nema veze jer nemam niti VMax niti LMax
p.Vmax = p.L2V*p.Lmax-3 ;

/.niti L2V kao varijablu
p.VInf = p.L2V*p.LInf-3 ;

%p.feedingExp = 1/6 ; (deleted in FIB as well)

%p.feedingExp = 0 ; %TEMP

127



% PHARMACOKINETICS
p.gB = 0 ; % toxicant decay in the blood
%p.DBL = 4.67 ; % diffusion of toxicants between B and L
p.DLS = 0.09 ; % diffusion of toxicants between L and S

% REPRODUCTION
p.ERO = 1.4E8 ; % minimum energy for reproduction
p.tNatal = 1 ; % length of gastation
% length of gastation+lactation, the dt/2 is for numerics
p.tWeaning = 2-p.dt/2 ;
p.a = 1.25 ; % growth rate during gestation
p.betavB = 0.35 ; %von Bertalanffy growth rate
p.kR = 0.7 ; %efficiency of reproduction
p.kE = I ; % reproduction insurance
p.femaleProb = 0.5 ; %probabilitiy that the newborn is female
% the last female (number in the population) that
% reproduces. Used to get stateVars for IC
p.stopReproductionAfter = 0

%HAZARD
p.hO = 0.09828
p.hl = 0.00192
p.thO 1

p.hCNE = 0
p.hmju = 0

p.measuredLifeExpectancy = 26
p.measuredProbabilityOfDeathDuringNursing = 0.08
% the probability of death in dt:

%p.age = O:p.dt:200 ;
%p.PDeath = hI(p.age, p)

%p.kill = 1 ; % whether to kill or not; better to set in the program.

% INITIAL CONDITIONS
% DFO energy assimilation; also, baseline for sinusoidal variation
p.fO = 0.9 ;

% females could use p.fO to decide on reproduction (but
% don't)

p.eO = p.Imax ; % used only in ftype 5 and 6
p.fNA = 0.9 ; % North Atlantic f
p.fS = 0.99 ; % Southern f
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p.CI0 = 0.035 ; % lipid-normalized concentration of toxicants in the food

%tracking (add filehandling to runWEB-once)
p.track = 0 ; %tracking in myWEB
p.trackHandleY = 0 ; %tracking in handleY

p.trackPopHandleY = 1 ; %tracking of populations in handleY
p.trackPopInterval = 1 ;
p.trackPopDetail = 0 ; % track all individuals every year

p.trackPopMean = 1 ; % track just the means every year
% funky bins because checking is done at t= whole number?

p.histEdges = [0:100] ;
p.trackReproduction = 0 ; %tracking reproduction stats in handleY
p.debug = 0
% file names
p.dir = 'matFiles\'
p.trackfName = [p.dir 'dataIndiv.mat']
p.trackPopfName = [p.dir 'dataPop.mat']
p.trackPopMeanfName = [p.dir 'dataPopMean.mat']
p.trackRepfName = [p.dir 'Rep.mat'] ;
p.trackNoRepfName = [p.dir 'NoRep.mat']
p.debugfName = [p.dir 'debug.mat']

% tracking variable
p.trackVar = 'toxicant transfer'

p.ftype = 1 ; % which feeding scenario to use?
p.CItype = 1 ; % which tox. scenario to use?
p.startZeroTox = 0 ; % start with no burden?

%initialize food variables
init_f

%initial condition
initIC

% kill?
p.kill = 0

%drawing preferences
p.str(1).name = 'Volume'
p.str(1).sty = 'k-' ;

p.str(2).name = 'Blood lipid'
p.str(2).sty = 'k:' ;

p.str(3).name = 'Lipid storage lipid'
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p.str(3).sty = 'b-' ;

p.str(4).name = 'Structural lipid'
p.str(4).sty = 'b:' ;

p.str(5).name = 'Blood tox.'
p.str(5).sty = 'r-' ;

p.str(6).name = 'Lipid storage tox.'
p.str(6).sty = 'im-' ;

p.str(7).name = 'Structural lipid tox.'
p.str(7).sty = 1m:1

% INITF.m

% the time-varying assimilation draws f from food.m; solveWEB
% CAN handle different food for each individual

% variables for varying f
p.varfBegin = 0.65
p.varfEnd = 1 ;
p.varfSteps = 100

% feeding scenario 1
% CONSTANT
p.fvars(1).fun = 'fconst'
p.fvars(1).fO = p.fO

% feeding scenario 2
% OSCILLATING
p.fvars(2).fun = 'fsin'
p.fvars(2).fO = p.fO ;
p.fvars(2).amp = 0.7*p.fO
p.fvars(2).freq = 1
p.fvars(2).phase = 0

% feeding scenario 3
% STARVATION
p.fvars(3).fun = 'fstarve'
p.fvars(3).fO = p.fO ;
p.fvars(3).cutoffTime = 40

% feeding scenario 4
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%. FOOD DROP

p.fvars(4).fun ='f-drop'

p.fvars(4).fO =p.fS

p.fvars(4).fl =p.fNA

p.fvars(4).cutoffTime =30

% feeding scenario 5

% TYPE II

p.fvars(5).fun = 'fType-II'

p.fvars(5).eO = p.eO

p.fvars(5).amp = p.eO

p.fvars(5).freq =1

p.fvars(5).phase =0

% feeding scenario 6
%. TYPE III phase = PI

p.fvars(6).fun = 'fTypejI'I

p.fvars(6).eO = p.e0

p.fvars(6).amp = p.eO

p.fvars(6).freq 1 1

p.fvars(6).phase =pi

M.YSTERES IS

p.fvars(7).fun I f-.hysteresis'

p.fvars(7).fO =p.fNA

p.fvars(7).fl 1 1

p.fvars(7).changel = 35

p.fvars(7).change2 = 40

%. CI scenario 1

% CONSTANT
p.Clvars(1).fun = 'CI-const'

p.Clvars(l).CIO = p.CIO;

p.Clvars(1).simTime = 100

p.CIVars(l).startZeroTox = 0

%~ CI scenario 2

% STEP UP
p.Clvars(2).fun = 'Cl-stepUp'
p.Clvars(2).CIO = p.CIO;
p.Clvars(2).cutoffTime = 40
p.Clvars(2).simTime = 120;

p.CIVars(2).startZeroTox = 1
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% CI scenario 3
% STEP DOWN
p.CIvars(3).fun = 'CI-stepDown'
p.CIvars(3).CIO = p.CIO ;
p.CIvars(3).cutoffTime = 40
p.CIvars(3).simTime = 120
p.CIVars(3).startZeroTox = 0

p.startZeroTox = p.CIVars(p.CItype).startZeroTox

% for speed, reserve the food handle now.
p.fhandle = str2func( p.fvars(p.ftype).fun );
p.Clhandle = str2func( p.CIvars(p.CItype).fun );

7.* * *** ***** ********

% INITIC.m

%initial condition includes two booleans: whether the mother is pregnant
%and/or lactating. Not used any more, but removing it would be painful.
%Of the two booleans, one seems to be boolean for gender, and
%I'm using the other for a unique ID
% IC = [ V E.b E.L E.S C.B C.L C.S tConception ID female
%raising# raised by# e.BO e.LO]
% IC = [ 1 2 3 4 5 6 7 8 9 10
%11 12 13 14 ]
p.IC = [ 1 1 1.68E6 0.1 0 0 0 -5 0 1 ...
... 0 0 0 0 ;
p.IC(4) = p.IC(1).* p.eSO

% RUNCISCENARIOS.m

clear
init-p
p.kill = 1
p.trackReproduction = 1
p.dir = 'CImats\'

fArr = [0.9, 1, 1.1]*p.fNA
*/.init-popIC
for countf = 1:3%length(fArr)

for countCI = 1:3
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p.Cltype = countCI

for countMT = 1:3

p.mothersDump = (countMT>l) % 7 1 for countMT=2,3
p.pupsReceive = (countMT>2)

fnanieBase = ['f' nuni2str(countf) '-_CI' numn2str(p.Cltype)

..-MT' num2str(countMT-1) '.mat']

p.trackRepf Name =[p.dir 'rep' fnameBase I;
p.trackPopMeanf Name =[ p.dir 'mean' fnameBase]

p.trackRepf Name = [ p.dir 'reproduced' fnameBase]

p.trackNoRepf Name = [ p.dir 'diedNR' fnameBase

% choose CI scenario and init

p.f0 = fArr(countf)

init-f

load popIC..300

if (p.f0<0.89)
load popIC-5k

end

p.I0 = tmp

% set concentrations in the IC to 0 if the scenoario is step up (2)

if 0%(p.Cltype == 2)

p.IC( :, 5:7 )=0.00001
end

p.maxAge = 65

%run longer for CI=3

if (countCl==3)

p.maxAge = 71

end

if 0%-(countf=2)
runWEB-once

end

% read mean pop. data file (HC-mean...)

[meanArr, varArr, ageDist, filtAgeDist, totBurdenArr]=

..readPopArr (p.trackPopMeanf Name, 'pop', p)

time = meanArr( :,1)

repRatioArr = meanArr( :,2)

meanCBArr = meanArr( :,7)

popSizeArr = meanArr( :,10)

CBVarArr = varArr C,7)
clear ageDistConv;

for i=1:length(ageDist(: ,1))-1

ageDistConv( i )=sum( abs~filtAgeDist~i+1,:)-filtAgeDist~i,:)));

end

%/ first find where it diverges
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%convBeg = find( ageDistConv > 0.015, 1, 'first')
%A now find where it converges again
convBeg = find( ageDistConv < 0.05, 1, 'first')
convEnd = find( popSizeArr < 80, 1, 'first' )
if ~length(convEnd) %A if the pop. never falls below 80

convEnd = length( popSizeArr)

end
%/check if convBeg exists and is less than convEnd by at least 5
if -length(convBeg)

convBeg = convEnd

end

if ((convEnd - convBeg < 5)
convBeg = min( convEnd -5, floor(convEnd/2))

end

disp ([convBeg, convEnd])
gRate = gRateFit( popSizeArr, convBeg, convEnd)
ageDistArr = mean(ageDist(convBeg: convEnd, :), 1)

% find max. average CB in any case
switch p.Cltype

case 1
maxCB( countf, countCl, countMT ) = mean( meanCBArr( 30:end))

case 2 % step up
maxCB( countf, countCI, countMT ) = max( meanCBArr)

case 3 %A step down
maxCB( countf, countCI, countMT ) = mean( ...
meanCBArr( p.Clvars(3) .cutoffTime-10:p.Clvars(3) .cutoffTime));
end

%A fit clearance or introduction rate if scenario 2 or 3
if p.Cltype==2

b~it = p.Clvars(2).cutoffTime+l

%A+1 accounts for t=0 (indexing starts with 1)
eFit = bFit+20;
T(2).bFit = bFit
T(2).eFit = eFit

%I formula is a(l-exp(e-bt));

t = time( bFit:eFit )-time( bFit)
T(2).t = t;
T(2).time = time

%A using value from this run as maximum GB
a = maxCB(countf, countCI, countMT);

clRatePoly = polyfit( t, -log( 1-meanCBArr(bFit:eFit)/a )
T(2).clRate-clean( countf, countMT ) = clRatePoly( 1)

% using value from constant run as maximum GB
a = maxCB( countf, 1, countMT );

clRatePoly = polyfit( t, -log( 1-meanCBArr(bFit:eFit)/a ),1)
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T(2).clRateC11( countf, countMT ) = clRatePoly( I );
T(2).totBurden( countf, countMT ).Arr = totBurdenArr

end

if p.Cltype==3

%.+1 accounts for t=O (indexing starts with 1)

bFit = p.Clva~rs(3).cutoffTime+1

eFit = bFit+20;

T(3).bFit = bFit

T(3).eFit = eFit

a = meanCBArr(bFit)

t=time( bFit:eFit )-time( bFit)

T(3).t = t;

T(3).time = time

clRatePoly = polyfit( t, -log( meanCBArr( bFit:eFit )/a ,1 )

T(3).clRate-clean( countf, countMT )=clRatePoly( 1)

a = maxCB( countf, 1, countMT );
ciRatePoly = polyfit( t, -log( meanCBArr( bFit:eFit )/a ),1

T(3).clRateCI1( countf, countMT ) = clRatePoly( 1 )
T(3).totBurden( countf, countMT ).Arr = totBurdenArr

end

% READ SIMULATION

% read reproductory file (HC-rep...)

[repArr, noRepArr] = readRepArr( p.trackRepf Name, p.trackNoRepf Name, p )

simData( countf, countCl, countMT ).repProbArr = repArr./ noRepArr;

simData( countf, countCI, countMT ).repRatioArr =repRatioArr

simData( countf, countCI, countMT ).meanCBArr =meanCBArr

simData( countf, countCI, countMT ).popSizeArr =popSizeArr

simData( countf, countCI, countMT ).gRate =gRate

simData( countf, countCI, countMT ).CBVarArr =CBVarArr

simData( countf, countCI, countMT ).ageDistArr
... ageDistArr/sum(ageDistArr)

simData( countf,countCI,countMT ).totBurdenArr = totBurdenArr

save workspace-.CI-scenarios

end

end

end

%A RUN-WEB-.ONCE.m

disp(['running... f=' num2str(p.fvars(p.ftype).fO)1)
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% open files for writing; all open files are closed at the end.
if p.trackHandleY

p.trackf Handle = fopen(p.trackf Name, 'w')

end

if p. trackPopDetail

p. trackPopfHandle = fopen(p .trackPopf Name, 'w')
end

if p.trackPopMean

p.trackPopMeanf Handle = fopen(p.trackPopMeanfNaxne, 'w')
end

if p. trackReproduct ion

p. trackRepfHandle = fopen(p trackRepf Name, 'w')
p. trackNoRepfHandle = fopen(p. trackNoRepf Name, 'w')

end

if p.debug
p.debugf Handle = fopen(p.debugf Name, 'w')

end

% calculate the solution for the individual
[EBt, EBSol] = solveWEB ( 'myWEB', [0 p.maxAge], p.1G. p)

% set N

if p.track > 0
N = p.track

else

N=2

end

% get the solutions
try

tConception = EBSol(N).y(end,8)

age = EBt - t~onception

V = EBSol(N).y(:,i)
E.B = EBSol(N).y(:,2)

E.L = EBSol(N).y(:,3)

E.S = EBSol(N).y(:,4)

C.B = EBSol(N).y(:,5)

C.L = EBSol(N).y(:,6)

C.S = EBSol(N).y(:,7)

catch

disp (['nothing this time'])

tBirth = 0;

age =EBt - tBirth

V =0;
E.B =0

E.L =0
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E.S = 0

C.B = 0

C.L =0

C.S = 0

end

%close all files

fclose( 'all')

%SOLVEWEB.m

function [time, rez] =solveWEB(dydt, timespan, initcond, p)

dt =p.dt;

t =timespan(l);

y =initcond;

% initially, number of individuals is equal to max. ID

maxID =length( y(:,l))

reportCount = 0;

for i=1 :round(Ctimespan(end)-t)/dt)

if ( rem(t, p.reportStep) < p.dt)

report~ount = report~ount + 1

for j1l:length(y(: ,l))
sol(j).y(reportCount,:) =squeeze (y (j,:) )

end

time(reportCount) = t

end

p.f = feval( p.fhandle, t, p)

p.CI =feval( p.Clhandle, t, p)

[y, maxID] = myaunge( dydt, dt, t' y, p, maxlD)

t~t+dt

end

if (rem(t, p.reportStep) < p.dt)

reportCount = reportCount + 1

for j=l:length(y(:,1))

sol(j).y(reportCount,:) = squeeze( y (j,:))
end

time( reportCount )=t
end
rez = sol

% MYRUNGE.m
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function [rez, newlD] = myRunge (dydt,h,t,y,p, maxlD)

fhandle = str2func(dydt);

%dydt returns a structure, hence it has to be evaluated first, and

%then the appropriate field of the structure needs to be used

%ONE

fl = feval(fhandle,t,y,p)

k1 = h*fl.dydt

%TWO

f2 = feval(fhandle,t+h/2,y+kl'/2,p)

k2 = h*f2.dydt

%THREE

f3 = feval(fhandle,t+h/2,y+k2'/2,p)

k3 = h*f3.dydt

%FOUR
f4 = feval(fhandle,t+h,y+k3',p)

k4 = h*f4.dydt ;

[rez, newID] = handleY(t, y+(kl'+2*k2'+2*k3'+k4')/6 , p, maxlD)

% MYWEB.m

function rez = myWEB (t, y, p)

% DO NOT KILL AFTER THE ASSIGNMENTS BELOW!!!

% evaluates the rate of change (dydt) at time <t> using parameters <p>
% and stores it into <rez.dydt>
%there are three sets of variables: C (concentration), E (amount of

%lipids) and F (fluxes of lipids). E.V is the volume of the structure

%compartment (for easier parameter transport)

%They are all structure types, with X.YZ simbolizing

%variable X, 'base' compartment Y and 'destination' compartment Z (in case

%of state variables, there is no destination compartment).

% The treatment of prenatal pups is so complicated because their size is a

% function of age, and not a result of the model

% assignements for easier reading

% Volume
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V = y(:,l)

% Energies
E.B = y(:,2)

E.L = y(:, 3 )

E.S = y(:,4)

%CONCENTRATIONS
C.B = y(:,5)

C.L = y(:,6)

C.S = y(:,7)

%reproductive stuff
tConception = y(:,8)
raisingNo = y(:,ll)

raisedByNo = y(:,12)
all = ones ( length(V),1 )

%HAZARD
'.h = y(:,8)

/.now comes the tricky part:
% pups are those that are younger than weaning age
age = (t - tConception) ;

pups = ( age <= p.tWeaning )
preNatalPups = find C age < p.tNatal )
postNatalPups = find C C p.tNatal <= age ) & ( age <= p.tWeaning ) )
% array of mothers
mothers = raisedByNo( pups )
% and pregnantMothers
pregnant = raisedByNo (preNatalPups)
%set up control here?
%for speed
V23 = V.-(2/3)

% flux to reproduction
F.BR = O*all ;

ENERGETICS

% flux from the environment
%F.IB = p.f * V23.*(V/p.Vmax).-p.feedingExp
F.IB = p.Imax * p.f * V23

% flux to maintenance
F.BM = p.M * V
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% flux to growth (note that, if times are good, growth continues even when
% the animal is reproducing
F.BG = max (0, ( p.betaG * E.B - F.BM ))

% exchange of lipids between the blood and lipid storage compartment
% Flux between B and L, positive for the flow FROM B TO L
F.BL = p.betaL* E.B ;
F.LB = p.betaL* p.kL*E.L

%PRE-NATAL PUPS 1/3
% rate of change of size
prNdVdt = prenataldVdt ( age (preNatalPups), p )
% cost of increasing the blood and storage lipids to meet the maintenance
% (see manuscript)
prN.FRB = p.M * prNdVdt/p.betaL ; % dE-{Fetus)_B/dt
prN.FRL = prN.FRB/p.kL ; % dE-{Fetus)_L/dt
% cost of growth
F.BG (preNatalPups) = p.G * prNdVdt

%EVERYBODY
%growth
dydt.V = F.BG / p.G
% flux to structural lipids
F.LS = p.eSO .* dydt.V

% PRENATAL PUPS 2/3
% energy needed = energy for growth + maintenance
F.IB( preNatalPups ) = prN.FRB +...
... + prN.FRL + F.BG(preNatalPups)+ F.LS(preNatalPups) + F.BM(preNatalPups);

%POSTNATAL PUPS
% POSSIBLE
F.BRMax = max(O, E.B/p.dt - (F.IB + (F.LB - F.BL) - F.BM - F.BG))
% ideal energy from mother during nursing
% target energy densities
e.BO = y(:,13)
e.LO = y(:,1 4 )

e.SO = p.eSO ;
F.IBIdeal = postNatal ( age, p, e )
F.IB (postNatalPups) = min ( F.IBIdeal(postNatalPups),

... p.kR*F.BRMax( raisedByNo( postNatalPups ) ) )

% EVERYBODY

% rate of change of structural lipids

140



dydt.E.S = F.LS ;

%rate of change of the lipid storage compartment

dydt.E.L = F.BL - F.LB - F.LS ;

%the energy output in mothers is

try
F.BR( raisedByNo ( pups ) ) = F.IB( pups )/p.kR

catch

keyboard
end

% rate of change of lipids in the blood

dydt.E.B = F.IB + (F.LB - F.BL) - F.BR - F.BM - F.BG

% PRENATAL PUPS 3/3

% growth and rate of change of struct. lipids as for everybody
% the two lipid compartments increase proportionaly to V;

% B and L do not exchange anything during gestation.

% rate of change of the lipid storage compartment

dydt.E.L(preNatalPups) = prN.FRL ;
%rate of change of lipids in the blood

dydt.E.B(preNatalPups) = prN.FRB ;

---- PHARMACOKINETICS

% mothers are receiving environemtnal concentration

toxIntake = p.CI.* F.IB ;

% for toxicological purposes, maintenance and growth of fetuses does

"% not increase their C.B (it gets washed away by the mother)

% but it does increase their mothers' CB

F.BM( pregnant )=F.BM(pregnant)+F.BM(preNatalPups)+F.BG(preNatalPups);

% and it does not count as a part of F.BR

F.BR(pregnant)=F.BR(pregnant)-F.BM(preNatalPups)-F.BG(preNatalPups);

% I could just set concentrations for fetuses to their mothers'C.B,

% but that would mean mass balances troubles when mothers' C.B change.

% for pups

toxIntake( pups ) = C.B ( mothers ).* F.IB( pups )*p.pupsReceive

%check that pups are not reproducing

if sum(F.BR(pups) > 0 )
keyboard

end

% toxicant diffusion between L and S

DLS = p.DLS.*( C.L - C.S ).* V23 ;
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% rate of change of toxicant concentration in blood (B). F.BL is a sink if
%F.BL>O, and source if F.BL<O. Also, if there is no energy, concentration=O
dydt.C.B = ( toxIntake + ( C.L.*F.LB - C.B.* F.BL) -

... C.B.* F.BR*p.mothersDump - C.B.*dydt.E.B )./ E.B - C.B.*p.gB
% only what actually stays in the pup contributes to its toxicant burden
dydt.C.B( preNatalPups ) = ( prN.FRB .* ( C.B( pregnant ) -

... C.B( preNatalPups ) ) )./ E.B( preNatalPups )
if (sum(E.B==O))

%used to check that clipping only occurs until age>0.2
clipping = find(E.B==O)
dydt.C.B (clipping) = 0

end

% rate of change of toxicant concentration in lipid storage (L)
dydt.C.L = ( (C.B.*F.BL - C.L.* F.LB) - F.LS - C.L.*dydt.E.L )./ E.L - DLS;
dydt.C.L( preNatalPups ) =

... (prN.FRL .*(C.B(pregnant)-C.L(preNatalPups)))./E.L(preNatalPups )
dydt.C.L (E.L == 0) = 0 ;

% rate of change of toxicant concentration in structural lipids (S)
% for prenatal pups I make a mistake of assuming the structural lipids come
% directly from the mother.., otherwise it gets really complicated
% because I'd have to balance all fluxes (to and from all compartments),
% which is very tricky when volume is a function of age.
dydt.C.S = ( C.L.*F.LS - C.S.*dydt.E.S )./ E.S + DLS
dydt.C.S( preNatalPups ) = ( F.LS( preNatalPups ) .*

*..( C.B( pregnant ) - C.S( preNatalPups ) ) )./ E.S( preNatalPups )
dydt.C.S (E.S == 0) = 0

if 0
try

%disp(['C.B=' num2str(C.B(2)) ', E.B=' num2str(E.B(2))])
if -(E.B(2) == 0)

keyboard
end
if ~(C.B(2)==O)

keyboard
end
if isnan(C.B(2))

keyboard

end
end

end
% make sure prenatals are not changing
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Ydydt.C.B (preNatalPups) = 0

Ydydt.C.L (preNatalPups) = 0

%dydt.C.S (preNatalPups) = 0

%~now convert state variables back to arrays

% Volume
rez.dydt(:,l) = dydt.V

% Energies;
rez.dydt(:,2) = dydt.E.B

rez.dydt(:,3) = dydt.E.L

rez.dydt(:,4) = dydt.E.S

%,CONCENTRATIONS
rez.dydt(:,5) = dydt.C.B

rez.dydt(:,6) = dydt.C.L

rez.dydt(:,7) = dydt.C.S

rez.dydt(:,8) = 0;

rez.dydt(:,9) = 0;

rez.dydt(:,10) = 0

rez.dydt(:,ii) = 0

rez.dydt(:,12) = 0

rez.dydt(:,13) = 0

rez.dydt(:,14) = 0

%SHAZARD

Yrez.dydt(:,8) = dydt.h

rez.dydt = rez.dydt'

%track stuff

%A all the time

if p.track

%~calculate the variable of interest

switch p.trackVar
case 'reproduction energy'

try

writeVar = F.BR(p.track)

catch

end

case 'toxicant transfer'

try
writeVar=[raisingNo(p.track) t F.BR(p.track) C.B(p.track)];

catch

end

end
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% write the variable into the file
try

fwrite(p.trackfHandle, writeVar, 'float32');

end
end

% just at the reportFract
if (0 & ( rem(t,p.reportFract)<p.dt ))

fwrite(p.trackfHandle,F.BR(1));
end

%debugging

% plot rates of changes
if 0

hold on
plot (t, dydt.V,'k')
plot (t, dydt.E.B,'r')
plot (t, dydt.E.L,'g')
plot (t, dydt.E.S,'b')
hold off

end

%plot state vars
if 0

hold on
plot (t, V,'k')
plot (t, E.B,'r')
plot (t, E.L,'g')
plot (t, E.S,'b')
hold off

end

% HANDLEY.m

% Adds and substracts individuals to and from y. Assumes nobody will die of
% hunger and give a birth at the same time. When death is brought in for
% the population model, be carefull to kill babies, or at least what
% happenes with the food input to the pup.

function [rez,newID] = handleY (t, y, p, maxID)

newID = maxID ;
% kill first, ask questions later (numbering issues)
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% but first...

% pups are those that are younger than weaning age
tConception= y(:,8) ;
raisingNo = y(:,ll) ; % not reset after weaning

raisedByNo = y(:,12)

7 pups are those that are younger than weaning age

age = t - tConception ;
pups = ( age < p.tWeaning )
% array of mothers

Suse only mothers, as raisingNo is not reset after weaning
mothers = raisedByNo( pups )

%now determine who died
% The lipids in the blood or in the energy storage (E.B or E.L) cannot

% be negative, kill those that have negative E.B or L.B or had bad luck.

if p.kill
condemned = find(( y(:,2)<O ) I (y(:,3)<O) I died( age, y(:,5), p ) )

else
condemned =[]

end
7 determine which pups go because their mother is done for

% you do not need to worry about moms whose pup died - their FBR

% should be 0, as all relations are determined by the pups
7 (y(:,9:10) are unneccessary (?)).
try

if length(condemned)

pupsKilled = raisingNo ( intersect ( condemned, mothers ) )
condemned = [condemned; pupsKilled ];
%disp(['t=' num2str(t) '; ' num2str(length(condemned)) ' die:

... num2str( condemned' ) ' ID ' num2str( y( condemned, 9 )' )])
end
% take out possible duplicates
condemned = unique( condemned )
7 adjust mother-pup links
for i=l:length(condemned)

tmpi = condemned( i ) ;
adjustRaisingNo = find( raisingNo > tmpi )
adjustRaisedByNo = find( raisedByNo > tmpi )

y(adjustRaisingNo, 11) = y(adjustRaisingNo, 11) - 1

y(adjustRaisedByNo, 12) = y(adjustRaisedByNo, 12) - 1

% capture individuals that have not reproduced but were born

if (p.trackReproduction*( -y( tmpi, 11 ) )*( ( t - y( tmpi, 8 )) <= ))

try

% write time, time of conception, ID, volume
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writeNoRepVar = [ t, y( tmpi, 8:9 ), y( tmpi, 1 ) ] ; % slog = 4
fwrite(p.trackNoRepfHandle, writeNoRepVar, 'float32');

catch
disp('deadNR write failed')
writePopVar(l,:)
keyboard

end
end

end
%OLD BLOCK TRACKING REPr.
% is it female and did it reproduce before dying? female.*(raisingNo>O)
%dead.reproduced = sum( y(condemned,1O).*( y( condemned, 11 ) > 0 ) ) ;
% dead that did not reproduce=(females dead)-(females that reproduced)

%kill
y( condemned, : ) = []
% we need some y for recording if we killed the last individual
%for debugging:
if Olength(condemned)

disp(num2str(raisingNo'))
disp(num2str(raisedByNo'))

end
catch

keyboard
end
allDead = -length(y) ; % y empty?

%REPRODUCTION
%recalc pups etc.
V = y(:,l) ;

tConception= y(:,8)
raisingNo = y(:,11) ; % not reset after weaning
raisedByNo = y(:,12)

if Olength(condemned)
disp(num2str(raisingNo'))
disp(num2str(raisedByNo'))

end

% pups are those that are younger than weaning age
age = t - tConception ;

pups = ( age < p.tWeaning )
preNatalPups = find ( age < p.tNatal )
%needs to be age<p.tWeaning so that the mother can have a pup this season.
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% shouldn't matter anyway now that I've said tWeaning-p.dt/2 in init-p
postNatalPups = find ( ( p.tNatal <= age ) & ( age < p.tWeaning ) )
% array of mothers
%use only mothers, raisingNo is not reset after weaning
mothers = raisedByNo( pups ) ;
pregnant = raisedByNo( preNatalPups )
lactating = raisedByNo( postNatalPups )
all = ones ( length(V),1 ) ;

% the cows have to decide whether to reproduce IF the season is right:
% Those that have enough energy to reproduce ( E.L>p.ERmin )
% but are raising anybody ( y(:,ll) ), conceived:
if ( rem(t+0.00001,1) < p.dt/2 )

disp ([ 't = ' num2str(t) ', N=' num2str(length(V)) ',

... fem=' num2str(sum(y(:,10)==M)) 1)
%p.kE*(p.ERO - (p.tWeaning).*( p.fO * V.-(2/3) - p.M * V ) )
E.RMin = p.ERO ;

conceived = find ( (y(:,3) >= E.RMin ).*(y(:,lO)==l) )
if p.stopReproductionAfter

conceived( conceived > p.stopReproductionAfter ) = []
end
% take out those that already have pups
conceived = setdiff ( conceived, mothers )

else conceived = []
end

% Those that just concieved (i.e. are pregnant but do not have a pup)
% create life, one calf at a time

for i = 1:length( conceived )
moNo = conceived (i) ; % mothers ID
%capture every reproduction

if p.debug
% write time, time of conception, ID, gender, parent, food
try

% slog = 4
writeDebugVar = [ t, y( moNo, 8:9 ), y( moNo, 10 ), y( moNo, 12 ), p.fO ];

fwrite(p.debugfHandle, writeDebugVar, 'float32');

catch
disp('deadNR write failed')
writeDebugVar(l,:)

keyboard
end

end
% if it's their firstborn, capture individuals; needs to be before

% raisingNo assignment
if p.trackReproduction*(~y( moNo, 11 ))
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% write time, time of conception, ID, volume
try

writeRepVar = [ t, y( moNo, 8:9 ), y( moNo, 1 ) ] ; % slog = 4
fwrite(p.trackRepfHandle, writeRepVar, 'float32');

catch

disp('deadNR write failed')
writeRepVar(l,:)

keyboard
end

end
newPup = length (y(:,l)) + 1 ; % NEEDS TO BE y!!!(because length changes)
% mother is taking care of the newPup
y ( moNo, 11 ) = newPup
% the pup need ICs:
y( newPup, : ) = 0
y( newPup, 12 ) = moNo
y( newPup, 8 ) = t ;
% set parameters for the target F.BR
% for shorter notation
y(newPup, 13:14) = y(moNo, 2:3)/y(moNo, 1)

% is it female?
y(newPup, 10) = (rand(1) <= p.femaleProb )
% set unique ID (serial numbe of the individual)
newID = newID + 1 ;
y(newPup, 9) = newID
if i==1

try
disp (['t=' num2str(t) ' Newborns=' num2str(length(conceived))

.: ' num2str(newPup:(newPup+length(conceived)-l)) ...
.. ' from ' num2str(conceived') ] )

catch

keyboard
end

end
end
rez = y

% RECORD STUFF

%general
if p.trackHandleY

try
writeVar = [(t-tConception(p.trackHandleY)) y(p.trackHandleY, 1:7)];

end

% write the variable into the file
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try

fwrite(p.trackfHandle, writeVar, 'float32');

end

end

%. write population data if it's time to do so.

if (p.trackPopMean * ( rem(t+0.00001, p.trackPoplnterval) < p.dt/2 )
popSize = length(y(:,9));

totBurden = sum( y(:,2:4).*y(:,5:7))

meanY = mean( y)

varY = var ( y)
% in case there is only one individual
if (size(y,1)==1)

meanY y ;

varY =zeros( 1, size( y, 2))

end

try

%A proportion of females that reproduced
repRatio = sum( y( :,10 ).* ( y( :, 11)>0 ))/sum( y( :,10 )
ageDist = histc( t -y(:,8), p.histEdges )
% length = 20 + (# of bins); change slog in readPopArr

writePopMeanVar=[t repRatio meanY(1:7) popSize totBurden..

... varY(1:7) ageDist' ];

catch %A assume popSize =0

writePopMeanVar =[t 0 zeros(1,7) popSize 0 zeros(1,7)

...zeros(l, length( p.histEdges )
end

try
fwrite (p .trackPopMeanf Handle, writePopMeanVar, 'float32');

catch
disp('write failed for means')

% writePopMeanVar
keyboard

end

end

if Cp.trackPopDetail *Crem(t+0.00001, p.trackPoplnterval) < p.dt/2 )
for tmpCount = 1:popSize

%save time, ID, volume, energy and tox. concentrations
writePopVar = [ t y(tmpCount,9) y(tmpCount,1:7)popSize y(tmpCount,8)..

..y(tmpCount,10)] ; % length = 12; change slog in readPopArr

% write the variable into the file

try

fwrite (p. trackPopf Handle, writePopVar, 'float32');

catch
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disp('write failed')
writePopVar(l,:)
keyboard

end
end

end

% READREPARR.m

% reads arrays of info from the file using method 'pop' (reading written
% population data) or 'indiv' (reading individual data)

function [repArr, noRepArr] = readRepArr ( nameRep, nameNoRep, p )
%assign handles
fName(1).name = nameRep

fName(2).name = nameNoRep
%allocate
timeRep = zeros (1,100000);
tConceptionRep = timeRep

IDRep = timeRep ;

timeNoRep = timeRep;

tConceptionNoRep = timeRep
IDNoRep = timeRep

for fileCount = 1:2

try
fHandle = fopen(fName(fileCount).name,'r')

frewind( fHandle ) ;
%disp ([ 'Reading ' fName(fileCount).name ])

catch
%keyboard

end

slog = 4
% get the first record (gives the time of conception)

%dummy = fread (p.trackfHandle, [800,10], 'float32')
arrPos = 1 ;

dummy = fread (fHandle, slog, 'float32')
Snow read the rest of the data
while (-feof(fHandle))% * (i<800))

switch fileCount
case 1 % reproduced
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timeRep( arrPos ) = dummy( 1 ) ;
tConceptionRep( arrPos ) = dummy( 2 )
IDRep( arrPos ) = dummy( 3 )

case 2 % not reproduced
timeNoRep( arrPos ) = dummy( 1 )
tConceptionNoRep( arrPos ) = dummy( 2 )
IDNoRep( arrPos ) = dummy( 3 )

end
arrPos = arrPos + 1
try

dummy = fread (fHandle, slog, 'float32')
catch

disp (['done reading at arrPos=' num2str( arrPos )]);
end

end
end
for tCount = 1:( max( [ timeRep timeNoRep ] ) )

% make array with number of members of a cohort conceived at
% tConception that reproduced (i.e. can be found in tConceptionRep)
repArr( tCount ) = length( find( tConceptionRep == tCount ) ) ;
% make array with number of members of a cohort conceived at

%tConception that did NOT reproduce (i.e. can be found in tConceptionNoRep)
noRepArr( tCount ) = length( find( tConceptionNoRep == tCount ) )

end

% READPOPARR.m

% reads arrays of info from the file using method 'pop' (reading written
% population data) or 'indiv' (reading individual data)

function [meanArr, varArr, ageDist, filtAgeDist totBurdenArr] =

... readPopArr ( fName, method, p )
%assign handles

fHandle = fopen(fName,'r')
frewind( fHandle ) ;
%disp ([ 'Reading ' fName ])

count = 1;
pupCount = 0
lastPup = 0
tMaturation = 0
toxTrans = 0
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interBI = 0 ;

tConception = 0
histLength = length( p.histEdges )

if strcmp (method, 'pop')

slog = 20 + histLength

% get the first record (gives the time of conception)
%dummy = fread (p.trackfHandle, [800,10], 'float32')
arrPos = 1 ;
dummy = fread (fHandle, slog, 'float32')

while (~feof(fHandle))% * (i<800))

try

meanArr( arrPos, 1:10 ) = dummy (1:10)'

% the first two are redundant, but I include them so that indices
% in mean and var correspond to the same thing
varArr( arrPos, 1:9 ) = [dummy(i)' dummy(2)' dummy(14:20)' ]
ageDist( arrPos, :) = dummy (21:end)'/sum(dummy(21:end))

% smoothe using a filter
filtAgeDist( arrPos, : ) = filter( p.filterArr, 1, ageDist( arrPos, :));

%disp ( [ 'time=' num2str( meanArr( arrPos, 1 )) ', arrPos=' ...
... num2str( arrPos ) ', popSize=' num2str( meanArr(arrPos, 10) )] )

arrPos = arrPos + 1 ;
totBurdenArr( arrPos ) = dummy( 11 )

catch
disp(['no data, error reading file; arrPos=' num2str( arrPos ) '.

... popSize=' num2str(meanArr(10))])
keyboard

end

try
dummy = fread (fHandle, slog, 'float32')

catch

disp (['done reading at arrPos=' num2str( arrPos )]);
end

end

end

if strcmp (method, 'indiv')
slog = 12 ;

% get the first record (gives the time of conception)
%dummy = fread (p.trackfHandle, [800,10], 'float32')
arrPos = 1 ;

% read first individual to get popSize
dummy = fread (fHandle, slog, 'float32')
while (-feof(fHandle))/ * (i<800))

clear data

popSize = dummy ( 10 )
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% for all individuals in this time step

for i=i:popSize

%/assign the current individual

data (i, i:slog) = dummy';

%Iread the next individual (or EOF)

try

dummy = fread (fandle, slog, 'float32')

catch

disp(P'done reading at arrPos=' num2str(arrPos) ', i=' nuxn2str(i)]);

end

end

try

meanArr CarrPos, i:slog )=mean ( data)
varArr CarrPos, i:slog )=var ( data )
disp ( 'time=' nuni2str( meanArrC arrPos, 1 )',arrPos=' .

..num2str( arrPos ) ,popSize=' num2str( popSize )
disp Cdata C1, 1:2 ))
disp (data Cend, i:2))
% calculate averages
%~keyboard

arrPos = arrPos + 1

if arrPos > 20

save tmpArrs meanArr varArr

end

catch

disp(['no data, error reading file; arrPos=' num2str( arrPos)

..,popSize=' nuni2str~popSize)1)

keyboard
end

end

end

fcloseC'all');

%, PRENATALV.m

function rez = prenatalV (pupAge, p)

rez = max(O,p.a*(pupAge - 0.2*p.tNatal).-3)

% PRENATALDVDT.m

function rez = prenataldVdt (pupAge, p)

rez=(pupAge > (0.2*p.tNatal+p.dt) ).*( 3*p.a*(pupAge -0.2*p.tNatal).-2)
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% POSTNATAL.m
%*** *** ** * *** *****

% gives total energy needs of a pup during lactation
function rez = preNatal ( pupAge, p, e ) ;

vBL = vBertalanffyLength ( pupAge, p.betavB, p.Lmax )
% convert vB length into model volume
V = p.L2V * vBL.-3 ;

vBGR = vBertalanffyGR ( pupAge, p.betavB, p.Lmax )
% convert vB length into model volume
dVdt = 3*p.L2V * (vBL.-2).* vBGR

FMBR = p.M*V ;

FGBR = p.G*dVdt

FEBR = (e.BO + e.LO + e.SO).*dVdt

rez = FMBR + FGBR + FEBR

% DIED.m

% returns those that died
function rez = died( age, CB, p )

if p.kill

%ageIndex = round( age/p.dt ) + 1
% get a random number for each individual
dice = rand( length(age), 1 ) ;
% those that had bad dice die
% tocnije: rez = ( dice < (1-exp(-p.PDeath( ageIndex )*p.dt) )'
hazard = hI( age, p ) + hCB( CB, p )
try

rez = ( dice < (hazard*p.dt))
catch

keyboard
end

end
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Chapter 4

Integrating Dynamic Energy
Budgets into Matrix Population
Models

The work in this chapter has been accepted for publication by Ecological Modelling

as

Klanjscek, T., H. Caswell, M.G. Neubert and R.M. Nisbet.

Integrating Dynamic Energy Budgets into Matrix Population Models

4.1 Abstract

Population dynamics depend on the growth and reproduction of individuals, which

are dictated by energy intake and budgeting. Here we show how to construct a sim-

ple matrix population model from a dynamic energy budget model in a constant or

seasonally variable environment. The matrix model accurately predicts asymptotic

population dynamics for a wide range of parameter values and environmental condi-

tions. The model captures some transients well, but more elaborate stage structure

is necessary when the initial age distribution within stages is far from the stable age

distribution.
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4.2 Introduction

Food availability and the resulting energy intake and budgeting are major factors

affecting growth and reproduction of individuals and, therefore, population dynamics.

To investigate these effects, one needs demographic models that incorporate energy

budgeting. In this paper, we use a physiological model describing individual energy

acquisition, energy allocation, growth and reproduction to calculate the vital rates of

a simple demographic model.

When constructing such coupled energy budget/demographic models, one must

make two choices. First, one must choose a description of the energy budget of an

individual. We chose a simple model based on the most comprehensive mathematical

theory currently available: the dynamic energy budget (DEB) theory (Kooijmnan 2000;

see Section 4.2.1). This model has the advantage of being a "supply-side model"

in which food availability determines growth, survival and reproduction. As such

it enables one to analyze the interacting effects of physiology and environmental

variability on population dynamics-effects that we hope to study in the future.

Second, one must pick a framework for describing the demography. Previous

theoretical studies have used continuous-time ordinary, delay, or partial differential

equations for this purpose. This is a mathematically natural choice because energy-

budget models typically treat time as continuous variable. Practical or biological

circumstances, however, often make discrete-time matrix population models more

convenient, hence their frequent use in empirical population ecology (Caswell, 1989;

Caswell, 1996; Ripley and Caswell 2005). Despite their popularity, we know of no

supply-side energy budget model linked with a matrix population model. Here, we

have chosen a simple two-stage matrix model (described in Section 4.2.2) for our

demographic model partly to demonstrate how to make such a link (in Section 4.3).

We provide a recipe for linking more general energy budget models with more general

matrix population models in Appendix A.

In Section 4.4 we compare our model's demographic predictions to simulations
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of an individual based model (IBM) in which individuals are governed by the same

physiological model. It turns out that the model accurately captures both long and

short-term population dynamics when the population is initially close to the stable age

distribution. When the population is not initially close to the stable age distribution,

our model and the IBM may disagree; we describe the reasons for this disagreement,

and how it can be ameliorated, in the Discussion (Section 4.5).

4.2.1 The DEB model

Energy budget models describe the acquisition and utilization of energy by individuals

for maintenance, growth and reproduction (e.g. Ren and Ross 2001). We constructed

a simple DEB model based on Kooijman (2000) and Muller and Nisbet (2000). The

model describes the energy budget of an ectothermic organism that grows, matures

at a fixed size, and reproduces in discrete periodic events during the breeding season

(birth-pulse reproduction). For a comprehensive review of DEB models and their

applications, see Nisbet et al. (2000).

In this DEB model, the organism is partitioned into two compartments: structure

and energy reserves. The exact composition of these compartments depends on the

species. In general, the reserves are materials that can be utilized as an energy

source by the organism (e.g. non-structural lipids, glucose and some proteins). The

remaining tissue (e.g. bones, muscle, structural lipids etc.) compose the structure

compartment. Fueled by the energy from the reserves, the structure enables the

organism to interact with its environment and feed.

Organisms assimilate acquired food into the energy reserves, or excrete it as feces.

They utilize energy at a rate determined by the energy stored in the reserves. Accord-

ing to Kooijman's "r,-rule" (Kooijman, 2000), organisms allocate a fraction ic of the

utilized energy to growth and somatic maintenance (i.e. increase and maintenance

of the structure), and the remaining fraction to maturation or reproduction, and to

maintaining the acquired level of maturity (Figure 4-1). Somatic maintenance takes

157



FOO -- assimilation _ NEG RESERVES Iutilizationt ma°tn.c 'h a

1 E N G f maturation reproductive

excretion .feces apparatus
REROUCTIVE BUFF.• newborns"

\jmaturation ma~int I heat nwon

Figure 4-1: The fluxes of energy in a n,-rule DEB model. Energy from food is assim-
ilated, stored into energy reserves, and then utilized. A proportion t; of the utilized
energy is spent on growth and somatic maintenance. A proportion (1 - K) is either
spent on maturation and maturation maintenance, or stored into a reproductive buffer
and spent on reproduction. In case of energy shortage, the somatic maintenance has
the absolute priority in energy allocation. Boxed compartments are explicitly mod-
eled in the DEB. Structure and newborns, although not measured in units of energy,
represent sinks of energy.

precedence over any other energy need. If the energy that can be extracted from the

reserves is not sufficient to satisfy the somatic maintenance, the organism (lies.

We use V (structural volume) and e (energy density [E] relative to maximum

energy density [E,,]) as state variables that describe the structure and reserves of an

individual of age s. Throughout the text we simplify the discussion by treating V as a

measure of the size of the structure of the organism. See Table 4.2 for a description of

all the state variables and parameters of the model, and Table 4.1 for the parameter

values we used as a starting point for our analyzes. A sample solution of the DEB

model is given in Figure 4-2.

Growth

The rate of energy intake f, which is measured relative to its maximum value, is a

function of food availability (Kooijman, 2000). The rate of change of scaled reserve

density, e, is proportional to the difference between f and e, where the constant of
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Table 4.1: Standard parameter values
Parameter Value

K 0.8

K, R0.001
v 0.075 my-1

m 0.58 y-1

g 0.25

V1, 10-9 m 3

VP 1.73 10-6 m3

[E~n]0.7 aJ(+)

ha 0.15 ?' 3dLNAy-1(++)

f 0.5
+ converts a chosen proxy for energy (dry weight in Muller and Nisbet (2000)) into Joules,

and cancels out after parameterization (Fujiwara et al., 2004).
++ dDNA is a unit of the damage-inducing compound which cancels out in calculations.

X 10-4
1 2
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> 1
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0.2

00 '

0 0 15 0 20 40 60

X 10-"

8 100

6 ~80/
60

4- 40

2 2
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C0
0 20 40 60 0 20 40 60

s S

Figure 4-2: Sample solutions of the DEB model as a function of age (s) using the

parameter values from Table 4.1 for constant energy intake (f(s) = 0.5) and oscil-
lating energy intake (f(s) = 0.5 + 0.3 sin (2wrs)). In the fluctuating environment, the
organism grows larger, commits less energy to reproduction, and accumulates less
damage (lower h(s)). For additional discussion see Muller and Nisbet (2000).
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Table 4.2: State variables as a function of age (s) and parameters of the DEB model.
For further discussion see Kooijman (2000).
descriptor dimension description

V(s) length3  volume of the structure compartment
[Enj] energy maximum energy reserve density
[E] lenegy energy reserve density
e(s) scaled energy density in the energy reserves,

I [E,,,
0 (s) energy cumulative energy committed to reproduction
Q(s) mass mass of damage-inducing compound
h(s) jw•baletity hazard rate: probability of death per unit of timetime,

S- energy partitioning coefficient
fraction of reproduction energy
realized in a newborn

v length energy conductancetimne

ntime maintenance rate coefficient: cost of maintenance
relative to cost of growth
energy investment ratio: cost of growth relative

g -to maximum avail energy for growth

mass mass-energy coupler: damage-inducing compound
r/ energy accumulated per energy respired

Vb length 3  structural volume at birth
V1, length3  structural volume at maturation

Vm length' maximum structural volume

CN energy effective energy cost of a newborn female
ha probabass time age ing acceleration (the rate of increase of hi)
f energy intake scaled to maximum energy intake
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proportionality v is called the energy conductance:

de i
=v(f-e)V-. (4.1)

ds )V

The rate of increase of structure in DEB theory is determined by the energy

allocated to growth and somatic maintenance, after the somatic maintenance has

been met,

max +___ 12 (4.2)

Note that the size of the structure cannot decrease.

Reproduction

We assume that the organism is mature, and allocates energy to reproduction, when-

ever V > V,,. In mature organisms, the energy flux to reproductive processes (includ-

ing maturation) is

I (1- h)[Ern]7 (vV +,rnV) when > 0
ER e \ + i (4.3)

[Em] veV3 - mgKV when 2 = 0

and the energy flux required to maintain maturity is

Em = (1 - h)[E,],r]g1,. (4.4)

Hence, the flux of energy to the reproduction buffer (/3) is

d/ - max (ER(V) - EMr, 0). (4.5)

ds

We assume that the energy buffer is emptied and utilized for reproduction at each

breeding event, if the mother accumulated enough energy to produce at least one

newborn.
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Mortality

Probability that the organism dies by age s + ds, given that it survived until age s,

is proportional to the hazard rate h(s):

P (dead at s + dsI alive at s) = h(s)ds. (4.6)

The hazard rate increases at a rate proportional to the density of damage-inducing

compounds within the organism (Q/V):

dh(s) Q
ds h- (4.7)

Damage inducing compounds are generated by respiration:

dQ dV
ds = '1g[Em] I + ?PV. (4.8)

Since h(s) is proportional to both r and ha,, we can simplify analysis if assume that 71

is unity and vary only ha in the analyses. The hazard rate and the mass of damage-

inducing compounds are assumed negligible in a newborn individual, so we set these

variables to zero at birth.

Throughout the paper we use the parameter values mostly obtained from a DEB

model for the mussel Mytilus edulis (Table 4.1) (Muller and Nisbet, 2000). The

value for [E,,] was not available in Muller and Nisbet (2000); we choose the one that

approximately matches the median value used by Fujiwara et al. (2004).

4.2.2 The matrix population model

Matrix population models are discrete-time structured models that divide population

into discrete stages, and describe evolution of the population through these stages

through time:

n(t + a)= An(t). (4.9)
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A is a projection matrix, a is the projection interval, and the vector n(t) gives the

distribution of individuals among stages at time t.

Although most applications require more complicated structures, as a test case

we used a two-stage matrix model that distinguishes between immature and mature

individuals. Individuals become mature when they reach a minimal reproductive size

The projection matrix is

P,• F
A = (4.10)

P21 P22

We assumed a birth-pulse population, with births occurring at the end of the projec-

tion interval. The transition probabilities depend on 7, the maturation probability,

and on or1 and 0a2 , the survival probabilities in stages 1 and 2:

P11 = cr1(l -( ), (4.11)

P 2 1 = (T7I, (4.12)

P22 = 0'2 . (4.13)

We assume that the maturation probability is independent of survival, and that the

projection interval is less than the age at maturity.

If all vital rates are constant, the asymptotic growth rate of the population is

given by the dominant eigenvalue A1 of the projection matrix A, and the intrinsic

rate of increase is
1

r I- n A1. (4.14)
a

The stable stage distribution is given by the right eigenvector wl associated with

A1. Other demographic statistics that can be obtained from the model include the

reproductive value (vl, the left eigenvector associated with A1), and sensitivities of

the growth rate to changes of the elements in the matrix.
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4.3 Methods

In this section we derive the matrix model from solutions of tile DEB model. We

assume that food availability f(t) is either constant or periodic with a period equal

to the projection interval (this might represent seasonal variability, for example).

Under these assumptions, for a given f(t), the age (s) of an individual completely

determines its size, the contents of its reproductive buffer, and how likely it is to (lie.

Individuals of different ages within each stage of the matrix model have different

probabilities of survival and rates of growth and reproduction. Hence, the parameters

for each stage are a weighted average of the DEB solutions. We use the stable age

distribution within a stage as the weighting function, although this will be strictly

correct only when the distribution is stable.

The stable age distribution is

O(s) = KAI exp - h()d) , (4.15)

where K is the ratio of number of newborns to the total population size in the stable

age distribution (see Appendix B).

4.3.1 Maturation probability ('Y)

Growth in the DEB model is deterministic. Since the period of food availability is

equal to one projection interval, all individuals experience the same food at the same

age and, consequently, reach the reproductive size (V1) and become mature at the

same age, T . Therefore, organisms in stage i are of age s E [Ti, Ti+I). In our matrix

model, Tl = 0, T 2 = TP and T3 = 00.

We have assumed that organisms cannot grow from birth to maturity in less than

one projection interval, so we restrict our attention to

T- > a. (4.16)
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Therefore, given that they survive, all individuals in stage i with ages

(T+I- O) < s < y+ 1  (4.17)

will grow into stage i + 1 in one projection interval. The probability of growing from

stage i into the next stage, conditioned on survival, is therefore

.4+1-l O(s)ds

fTi+1 -(4.18)

] q(s)ds

In our matrix model, individuals can only mature from the immature to the mature

stage. Hence, the maturation probability

J O(s)ds
Tp = "(- (4.19)

O(s)ds

4.3.2 Survival probabilities (a)

Individuals in stage i at time t have age s E [7i, Ti+1). We assume their age distrib-

ution is O(s). After one projection interval, all individuals grow older by a and have

the distribution O(s)er"'. Survivorship is given by the ratio of number of individuals

who lived through the projection interval and the initial number of individuals,J •+( (s ) c, 0 ds

i- T,+ (4.20)

1i O(s)ds

-A T',+ (4.21)
O(s)ds
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4.3.3 Fecundity (F)

We estimate the flux of energy to the reproductive buffer as the average flux within

the stage.
+ 0 d/3(s) <

Jr = d" (4.22)

11i+1 (s s(.2
If CN is the energy cost of a newborn, one adult produces

N 2 -= A0 2  (4.23)
0 N

newborn females on average during each breading season. Considering both energetics

and demography, the energetic cost of one newborn female is

1
CN =- -[ErJ (69g ± e) Vb. (4.24)

/'R

This cost includes the energy used to create its structure (proportional to [E,,,] Vb), the

energy given to it by its mother (e[E..]V,1). Furthermore, there is a cost associated

with the tissue mother discards at birth, and the demographic reality that only a

fraction of newborns are female and survive. This cost is represented by KRn E (0, 1]

in equation (4.24).

Our model ignores respiration of the structure of the newborn prior to birth,

possibly variable duration of pre-natal development and other less significant factors.

The form we use is simple, but still elaborate enough to capture the increase in energy

transfer from mother to child as the energy density of the mother (e) increases. We

assumed that the young were born with energy density equal to the mother's averaged

over the projection interval.

Fecundity (F) is the number of newborns at time t + a per adult at time t. In

our birth-pulse population, it is the rate of production of newborns per adult that
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Figure 4-3: Schematic of the assessment process. We created an IBM based on
the DEB model. We fitted the growth rate and stable stage distribution (SSD) to
the observed population dynamics, and used the transition frequencies observed in a
simulation of the IBM to calculate the observed vital rates. At the same time, we
arrived at the vital rates through the methods described in sections (4.3.1)-(4.3.3) and
calculated the growth rate and SSD from the resulting MP model. The performance
of the matrix model has been assessed through comparison between the two sets of
vital rates, growth rates and SSDs.

survived to the end of the projection interval a (Caswell, 2001, pp. 172-173),

F= (T2 N 2 . (4.25)

Equations (4.19), (4.21) and (4.25) provide the necessary vital rates to write down

the projection matrix (4.10). However calculating O(s) requires a value for A,. We

can arrive at A1 through an iterative process: start with A, = 1, find the matrix

model and calculate the growth rate A,. Repeat the process with A, = A1 until the

desired accuracy is reached (Caswell, 2001, pp. 164). In this paper we required that

the growth rate converge to the accuracy of 10-3.

4.3.4 The individual-based model (IBM)

To assess the ability of the matrix model to capture the dynamics of a population, we

compared its asymptotic and transient dynamics with the simulations of an individual

based model (IBM) in which individuals grow according to the DEB (Figure 4-3).

In the IBM, at each time step individuals of age s grow older by ds, grow by

dV, die with probability h(s)ds, and commit dO3(s) energy to reproduction. Every
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projection interval (a units of time) individuals reproduce according to the energy

stored in the reproductive buffer.

We calculated the number of newborn females produced by one individual female

in one breeding season (N) from the ratio of the energy accumulated since the last

reproduction (AJ3) and the energy needed to produce one newborn female (CN). The

ratio is not an integer, whereas N needs to be. Therefore, we have to round the ratio

so that the expected number of newborns is equal to it. Denoting the integer part of

the ratio as floor (A13), the number of female newborns for each individual is

floor (A-/) +1 with probability -- floor (N)
N =NCNC (4.26)

floor (-A) with probability (I- (-N- floor

We eased the computational requirements by treating individuals with age dif-

ferences less than (is = 0.01 as having the same age. Because reproduction is sea-

sonal, and all individuals reproduce at the same time, the resulting age distribution

is 'spiked', i.e. individuals can have only discrete ages corresponding to the repro-

ductive events. This is in contrast with the continuous age distribution that has been

assumed in the matrix model.

From the IBM simulations, we measured population growth rate and the stable

stage distribution (SSD) and compared them to those predicted by the matrix model.

We also measured al, 02, and y from the the IBM. Let the number of transitions

from stage j to stage i be n'j, where stages 1, 2, and 3 are immature, mature and

dead individuals, respectively (Table 4.3). Then

&= 1 - n3l(4.27)

nil + n21 +- n3l

+2 1 - n 32  (4.28)
nt22 +- n12 +- 7132

n21 (4.29)
(nil + n 21 )

F n12 (4.30)
n22 ± n32
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Table 4.3: Transition counts nij from stage j to stage i.
immature (j = 1) mature (j = 2)

immature that
immature (i = 1) did not mature (n) newborns (n 2)
mature (i = 2) immature that matured (n 21) mature that survived (nr22 )

dead (i = 3) immature that died (n31 ) mature that died (n 32)

The asymptotic comparisons of the rates and demographic statistics required that

the population converge to a stable age distribution. We ran the simulations for 130

units of time or until the population went extinct. We discarded the first 10% and the

last 20% of the simulated time interval to allow for as much convergence as possible

before the onset of low-number effects, and used the remaining data as observations

for comparison. We expedited convergence by using the equation (4.15) to distribute

the initial 1000 individuals through ages using the predicted A1. The Convergence,

however, was not always attained, especially for parameter values that produced

very small growth rates. If the initial 1000 individuals did not a provide sufficient

number of observations to measure the vital rates, we used an initial population of

106 individuals.

4.4 Results

4.4.1 Long term (asymptotic) dynamics

In Table 4.4 we compare observations of the IBM and the predictions of the matrix

model for the standard parameter values listed in Table 4.1 for TP = 3a.

Predicted and observed 'y and al agree extremely well; even the greatest propor-

tional differences1 , for F and a 2, are less than 12%. As a result, the growth rates

hardly differ. To see whether these demographic statistics obtained from the matrix

model and the IBM agree for a wide range of parameters, we compared the observed

I proportional difference - (ohs'.rvc.. value)-(predicted vawtil)
(obsvrvwd vahlt)
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Table 4.4: Comparison of predicted and observed demographic statistics and vital
rates.

Observed Predicted
A 1.13 1.13

SSD 0.61 0.59
Y 0.26 0.26

a1  0.93 0.91

(2 0.84 0.72
F 0.71 0.77

and predicted demographic statistics for different values of the parameters h/,, f, CN,

r,, E.. and a. Unless noted otherwise, while changing one parameter, we used values

from Table 4.1 for others.

The results are shown in Figures (4-4)-(4-9). Plot A of each figure compares the

growth rates. Plots B and C show proportional differences between predicted and

observed growth rates, stable stage distributions, fecundities, and transition proba-

bilities. Plot D shows the proportional differences between the observed arid predicted

survival probabilities.

Population growth rates match very well across all the parameter ranges inves-

tigated. The estimates of the vital rates show greatest discrepancies for low growth

rates, mainly because populations went extinct in the IBM before reliable observation

could be made.

Fecundity was, in general, overestimated. This is notable in Figure 4-4 for large

hazard rates: F is overestimated by as much as 7% for ha, = 0.1 arid more than 100%

for large ha. The main reason for the overestimate is that when h,, is high, individuals

in the IBM die before they accumulate enough energy to reproduce, and whatever

they have accumulated is lost to the population. The matrix model, however, pools

the energy committed to reproduction from all adults, so the accumulated energy for

reproduction is not lost. We call this the pooling effect.

The pooling effect is ubiquitous, but more notable when adult life span is short

and when it takes longer to accumulate enough energy to reproduce, i.e. when h,,
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Figure 4-4: Predicted and observed vital rates and demographic statistics versu~s
ageing acceleration (ha,): the comparison of growth rates (A), proportional difference
between the predicted and observed A• and SSD (B), F and -y (C), and a, and (T2

(D). For h(, < 10-' the agreement continued to be excellent (tested to h,, = 10-'•).
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f < 0.2 populations went extinct too fast to estimate vital rates from observations.
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Figure 4-7: Predicted and observed vital rates and demographic statistics versus
maximum energy density ([E,,,]): the comparison of growth rates (A), proportional
difference between the predicted and observed A and SSD (B), F and -y (C), and (71
and a 2 (D). The range was adopted from Fujiwara et al (2004).
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Figure 4-9: Predicted and observed vital rates and demographic statistics versus age
to maturity measured in projection intervals (a): the comparison of growth rates (A),
proportional difference between the predicted and observed A and SSD (B), F and
y (C), and or and a 2 (D).
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CN and [E,,,] are large, and f and K are small. Since all of these factors decrease the

population growth rate, the pooling effect is also more notable for small growth rates.

Figures 4-5 and 4-7 provide further examples of the pooling effect. In Figure 4-5,

we overestimate fertility by about 80% for small f (and small growth rates). In Figure

4-7, the same happens for large [Em].

In Figure 4-6 we changed the cost of newborns CN by changing the reproductive

efficiency KR (4.24). For very large CN, both the observed and the predicted growth

rates asymptote to the growth rate dictated by mortality alone (A ; 0.7). Although

it should remain constant, the observed survivorship of adults (&2) changes with CN.

It is not clear why &2 changes, but huge growth rate and finite possible age of adults

are probable causes. When the number of individuals is large and increases quickly,

significant rounding due to limited number of digits represented in the computer takes

place, influencing the transition counts (n0j in 4.27-4.30) and the observed vital rates.

Furthermore, when the population is huge, a large number of individuals live to very

old age. Consequently, the maximum possible age assumed in the IBM may not

be adequate: some individuals may be assumed dead just because they exceed the

maximum age assumed by the IBM, thereby increasing adult mortality (decreasing

&2).

The fraction of energy used for growth and somatic maintenance (K) is probably

the most important parameter in the DEB theory. In Figure 4-8 we changed K to rep-

resent a range of organisms, from reproduction-oriented (small K) to growth-oriented

(large K). We observed the greatest discrepancies in the stable stage distribution (up

to 25% for small K), mostly due to similarly large overestimate of fecundity due to

the pooling effect.

We varied the relationship between the projection interval and the age at maturity

by changing the length of the projection interval (Figure 4-9). A shorter projection

interval implies a longer time to maturity measured in projection intervals because the

growth of organisms measured in units of time (from the DEB model) is not affected
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by the chosen projection interval (a). The observed ratio of mature to immature

individuals shows a sawtooth pattern as the time to maturity deviates from integer

multiple of the projection interval.

This is a consequence of spiked age distributions characteristic of birth-pulse pop-

ulations (discussed in Section 4.3.4). Changing the projection interval changes the

ages at which spikes occur at the census time, while the age at maturity always stays

the same. The interaction between the two can influence transition counts. For exam-

ple, if time to maturity is 2.00 projection intervals, a cohort of newborns is counted as

mature two censuses later. If the time to maturity is 2.01 projection intervals, the co-

hort is counted as immature. Neither cohort produces any newborns. Therefore, one

can expect large discrepancies when comparing the ratios of individuals in each stage

as the time to maturity changes, but not when comparing population-level statistics,

such as the growth rate.

4.4.2 Seasonal environmental variability

In many systems, the environment varies strongly within any one year, but there is

little year to year variation for any given season. Most long-lived organisms have ways

of coping with that variability - e.g. energy reserves to carry them through times of

scarcity. In this section, we ask if the matrix model can successfully account for such

variability. We do this by varying the energy intake f in our DEB model and then

assessing its effects on the population growth rate.

If we assume that the projection interval represents one year we can represent

seasonal variability by a periodic energy intake with period equal to one year.

f(t) = fo + fA sin (2-t) (4.31)

with fA representing the amplitude of oscillations, and average energy intake fo = 0.5.

We calculated population growth rates (Figure 4-10) for the range of fA from

the minimum (constant energy intake, fA = 0) to the maximum (fA = fo). We

178



1.14
(A) (B)

1,12 -. 1

~1.18
1.-1

1 .04 - - - observed X - S

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

fA fA

1.5 1.5

1 ( ) 1 (D

0 .5 0 .5

6 -0.5 ---- 6 -0.5 __a

F -1 f f

-150 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

fA fA

Figure 4-10: Predicted and observed vital rates and demographic statistics versus
amplitude of sinusoidal food intake fluctuations (fA): the comparison of growth rates
(A), proportional difference between the predicted and observed A and SSD (B), F
anl -y (C), and (71 and 0'2 (D).

assumed that the newborns are born with the average energy density (e(0) = 0.5)

in the calculations; this assumption guarantees that all individuals follow the same

developmental path.

The abrupt changes of the proportional differences in SSD, F and -Y in Figure

(4-10) at fA z- 0.3 are due to a sudden increase in the observed fecundity and decrease

in the observed transition probability as the seasonal variability increases above fA >

0.3. Even though the predicted vital rates do not follow that trend, the predicted

and observed population growth rates agree well over the whole range of fA.

The growth rate is highest when the seasonal variability is limited, and lowest

when the seasonal variability is extreme. In a variable environment, both the energy

committed to reproduction and the hazard rate are smaller than in a constant envi-

ronment (Figure 4-2). For small seasonal variability the benefits of a smaller hazard
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rate outweigh the detriments of a smaller commitment of energy to reproduction; the

reverse holds for large seasonal variability.

4.4.3 Short term (transient) dynamics

To asses accuracy of the matrix model for predicting transient dynamics we examined

two sets of scenarios, loosely corresponding to colonizations and catastrophes. In

the colonization scenarios, we initialized the IBM with 1000 newborns or with 1000

individuals that had just matured. In the catastrophe scenarios, we allowed tile

population to converge for 20 projection intervals and then eliminated all the juveniles

or all the mature individuals. We used the standard parameters (Table 4.1).

Age distributions extremely different from the stable age distribution in the colo-

nization scenarios proved to be a significant challenge to the simple two-stage matrix

model. Two effects cause the large discrepancies in transients when newborns only

are considered: the pooling effect and the numerical diffusion. The pooling effect, dis-

cussed in Section 4.4.1, results from the ability of the adults in the matrix model to

pool their reproductive resources and produce newborns immediately, while in reality

individuals must accumulate enough energy to reproduce. The numerical diffusioll is

a consequence of the inability of the matrix model to distinguish individuals within

a stage, i.e. individuals 'diffuse' throughout the stage. Therefore, the matrix model

overestimates maturation following colonization by newborn individuals because a

certain proportion of individuals in the matrix model matures at each projection

interval, while in reality individuals must stay in the immature stage until age T,.

Both effects result in an overestimate of the number of newborns, and the ma-

trix model predicts quicker-than-observed population recovery (Figure 4-11). Adding

more stages to the matrix model would help ameliorate both effects.
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Figure 4-11: Colonizations: Plots (A): initial population is comprised of newly born
individuals. Population size (Al) and ratio of matures and immatures (A2) shown.

Plots (B): initial population is comprised of newly matured individuals. Population
size (B1) and ratio of matures and immatures (B2) shown. Catastrophes: Plots
(C): all immatures die. Population size (CI) and ratio of matures and immatures
(C2) shown. Plots (D): all matures die. Population size (Dl) and ratio of matures
and immatures (D2) shown.
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4.5 Discussion

The physiological responses of individuals to their environment determine their growth,

survival and reproduction. In turn, these vital rates determine the dynamics of pop-

ulations. In this paper, we have demonstrated how one can connect tile physiological

responses of individuals to population dynamics by constructing a matrix population

model whose transition probabilities are determined by a DEB model. Although the

analyses in this paper use a particular DEB model based on Kooijiman's DEB theory,

the developed framework (summarized in Appendix A) is general.

The construction process involved a number of approximations. To asses the

impact of those approximations we compared the predictions of the matrix model to

observations of an IBM whose individuals were governed by the DEB model. We found

that, in general, predictions of the vital rates (fecundity, maturation probability, and

survivorships) and of two asymptotic demographic statistics (population growth rate

and stable stage distribution) closely matched the observations. Our approach tends

to underestimate adult survivorship and overestimate fecundity. These mismatches

are typically small, but are largest for rapidly declining populations. The mismatches

can be attributed to two causes. First, it is difficult to estimate the vital rates from

observations of the IBM when A is small because the number of stage transitions

observed before extinction is limited. Second, the pooling effect (discussed in Section

4.4) becomes more important when A is small. This effect, present in other structured

models (e.g. Nisbet et al., 1997), is caused by pooling the reproductive energy of

organisms unable to reproduce individually into a common pool, which then provides

enough energy to produce offspring.

In addition to comparisons of asymptotic statistics, we also compared transient

population trajectories under a number of ecological scenarios. The match between

the matrix-based predictions and the IBM-based observations were good when the

initial age distribution within each stage was close to the stable distribution. How-

ever, when these distributions were not close, the matrix model poorly captured the
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transient dynamics, principally as a result of numerical diffusion (discussed in Section

4.4.3). The effects of numerical diffusion can typically be ameliorated by the inclusion

of additional stages in the matrix model.

Many previous studies relate continuous time physiological models to demographic

models. For example, de Roos et al. (1992) connect size-dependent growth, mortal-

ity and reproduction, obtained from a physiological model, to demographic dynamics

using escalator boxcar train technique (see also de Roos, 1988; de Roos, 1997; de

Roos et al., 1997). Ross et al. (1994) connect rudimentary zooplankton energy bal-

ance models to ecosystem dynamics using ordinary differential equations (see also

Ross et al., 1993a, 1993b), while Nisbet et al. (1997) use the same type of equations

to represent biomass dynamics of a Daphnia population starting from partial differ-

ential equations for individual growth based on simple physiological considerations.

Dougherty et al. (2002) link a physiological model of bacterial growth to popula-

tion dynamics through ordinary differential equations representing sugar availability,

acid concentrations and energy storage. McCauley et al. (1996) investigate dynamics

of a stage-structured demographic model formulated using delay-differential equa-

tions starting from physiology of a herbivorous zooplankton (see also Gurney et al.,

1983; Nisbet and Gurney, 1983; Nisbet et al., 1989). Kooi and Kooijman (1999) in-

vestigate differences between discrete and continuous approaches to reproduction by

incorporating a DEB model into partial differential equations describing two physio-

logical stages of their demographic model, and then using a finite difference scheme

to project the population through time (see also Murphy, 1983; Metz and Diekmann,

1986, Kooijman et al., 1989). In addition to connecting a physiological model to the

McKendrick-von Forester population conservation equation (Kot, 2001, pp. 391-400),

Ault et al. (1999) add a spatial model to investigate population dynamics of sea trout

and pink shrimp. These studies highlight the fact that there are demographic models

other than matrix population models that we could have used.

Choices among these demographic models depend both on biological considera-
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tions (the life cycle of the organism, the form of the data, and the biological question

at hand) arid on the tastes of the scientist. Matrix models have several strengths. For

many organisms, classification by stage is more useful than classification by age, and

stage-classified models are particularly easy to develop in matrix form. In addition,

matrix models are currently used in the theory of life history evolution more than

other stage-structured models (Roff, 1992; Stearns, 1992), as an approximation to

McKendrick-von Forester population equations (Kooi et al., 2001), as well as a way

to incorporate toxic effects observed in individuals into demographic models (Lopes et

al., 2005). We hope to use our modelling framework to address evolutionary questions

at another time.

Our analyses in this paper is based on a specific ic-rule DEB model. The approach

we use requires only the solutions of our individual model: size, energy committed

to reproduction, energy needed to reproduce, and the risk of death as functions of

age. The same approach can be used with any other K-rule DEB model (Kooijinan

2001), as well as any other individual model that produces these outputs (e.g. von

Bertalaniffy, 1957; Kilgore & Armitage, 1978; Wunder, 1978; Paloheimo et al., 1982;

Huntley et al., 1987 (review); Hallam et al., 1990; Markussen et al., 1990; Persson ct

al., 1998; Hickie et al., 2000).

The principal advantage of a n,-rule model is that it is a supply side model, i.e. a

model in which food availability determines the growth, survival and reproduction of

individuals2 . As such, it enables us to analyze the interacting effects of physiology

and environmental variability on population dynamics. We plan to investigate these

interactions in the future.

The matrix model presented in this chapter has only one dimension: size, V. To

capture growth at different food availabilities, the matrix model needs to account for

energy density of individuals. This means that individuals have to be classified not

2A demand-side model, in contrast, determines what the energy intake must have been to have
produced a prescribed pattern of growth and reproduction.
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according to size only, but energy density as well. I present a way to extend the

matrix model to include energy as a state variable in the Appendix C.
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4.8 Appendix A: Creating a matrix model based
on a physiological model

1. Pick a projection interval a.

2. Obtain age-dependent size (V(s)), age-dependent commitment of reproductive

energy (43(s)), and age-dependent probability of death conditioned on survival

up to that age (h(s)) of an individual. For a DEB, use equations outlined in

Table 4.5.

3. Estimate energetic cost (CN) of newborns.

4. Determine stages of the matrix model by dividing individuals into those younger

than and older than the age at which individuals mature (Ta).
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5. Assume a growth rate A1, e.g.

1 =S•,,,,,d 1. (4.App.A.1)

6. Calculate the normalized stable age distribution using (4.15).

7. Calculate the transition probability (7) using (4.19) or (4.18) in case of more

than two stages.

8. Calculate survivorships (ai) for each stage using (4.21).

9. Calculate the average energy committed to reproduction per projection interval

per mature individual from (4.22), the average number of newborns from (4.23),

and the resulting fecundity (F) using (4.25).

10. Assemble the projection matrix using (4.10).

11. Calculate the maximum eigenvalue of the projection matrix, A7 I"ci"lattd.

12. Repeat steps 6-12 with

',,,d =AcalClate~d (4.App.A.2)

until satisfactory convergence of the growth rate is obtained. When A(idclate(d

is very different from A",III,,,,, the iterative process may be unstable because of

possible overshoots that can lead to oscillations, rather than convergence. In

such cases, in each iteration change A•"u"ed by only a fraction of the difference

between Alssu)ed and Acalcted from the previous iteration.

4.9 Appendix B - Calculating the stable age dis-
tribution

Let N(s, t) be number of individuals of age s at time t. Then the total number of

individuals at time t is

NT(t) = j N(s, t)ds, (4.App.B.1)
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Table 4.5: DEB model equations
Description Equation #

Rate of change of energy density (4.1)

Rate of change of volume of the structure (4.2)
FhLx of energy committed to reproduction (4.5)
Number of newborns in a breading season (for 1 female) (4.26)
Rate of change of the hazard rate (4.7)
Rate of accumulation of damage-inducing compounds (4.8)

and the age distribution
N (s, t) (4.App.B.2)
NT ( t)

From the definition of the hazard rate (4.6), we can calculate the probability that an

individual survives to age s,

01(s) = exp - h(x)dx). (4.App.B.3)

The number of individuals of age s at time t is, then, the number of individuals born

at time t - s that survived until the time t,

N(s,t) = N(O,t - s)Ol(s). (4.App.B.4)

Furthermore, assuming the age distribution is constant and the intrinsic growth rate

of the population r, the number of individuals of any age changes exponentially, so

N(s, t) = e-rN(s, t + s). (4.App.B.5)

Inserting (4.App.B.4) and (4.App.B.5) into (4.App.B.2) gives
"-r N (0, t) 01 (s)(4apB6

O(S) = e NT(t)

Since the age distribution is stable, the ratio of newborns to the total population is

constant. Hence,

O(s) = Ke-rs(s). (4.App.B.7)
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Combining (4.App.B.3) and (4.14) with (4.App.B.7) and simplifying gives the stable

age distribution (4.15).

4.10 Appendix C - The extended matrix popula-
tion model

I follow the same general approach to the model as in the chapter above: first, I

group individuals in stages, then I calculate the rates that govern transitions between

these stages in a projection interval a. Finally, I assemble the projection matrix

from these rates. I group individuals according to their size (V), and energy density

(e); Vj and e, denote the Jth size and the ith energy stages, respectively. I estimate

the transition probabilities between the stages from the simple DEB model (4.1-4.8)

which describes the rates of change of energy density (e), structural volume (V),

energy in the reproductive buffer (3), and the hazard rate (h) of an individual.

I define PijkI as the probability that an individual of size V, and energy density ek

at time t grows to size Vj and changes to energy density ei at time t + a. For j = 1,

Pijkl represents fertility: the average number of offspring born with energy density ci

by a female of size V, and energy density ek.

I assume Pijkl has two parts. The first part, Rjl(VI, ek), is the probability of

growing from V, to Vj during the projection interval. It depends on the energy density

of the individual at time t (ek), but not on the energy density of the individual at

time t + a (ei). For j 1, Rji(ek) represents the fertility of the individual of energy

Ck and size V1.

The second part is the probability of changing the energy density from ek to Ci,

Qik(f, Vi, ek). It depends on the food availability (f) and the size of the individual at

time t (Vi), but does not depend on the final size of the individual (Vj). The offspring

are always born with the energy density equal to that of their mother.

These assumptions imply that changes in V depend on the initial value of e, but

are independent of changes in e. Similarly, changes in e depend on the initial value
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of V, but are independent of changes in V. Then fertility and probability of growth

are independent of probabilities of changes in energy density. Therefore, Pijkl is the

product of Rjj(VI, ek) and Qik(f, V1, ek). Using a short-hand notation R (k) and Q (f) (

for Rjl(VI, ek) and Qik(f, V1, ek), the transition probability Pijkl is then

R(k) (1)

Pijkl (f) Rj Qik (f). (4.App.C.1)

4.10.1 Transitions between size classes, R(k)

Here I calculate growth and reproduction assuming constant energy density between
Sand t + a. To calculate Rf(k) the probability of transition from V to Vj for en-

ergy density ek, I generalize methods presented earlier in this chapter. As in the

simple matrix model, all size classes with energy density ek adhere to the stable age

distribution O(k) (8):

O(k)(s) ( K (Ak) A exp - h(k)({)d) , (4.App.C.2)

where s is the age of the individual, A(k) the growth rate of the population when

individuals have energy density ek, and h(k) (s) the hazard rate of an individual of age

s and energy density ek. Note that here we ignore past, present and future changes

in energy density ek.

Grouping individuals into stages implies that the individuals of the same size have

the same age and transit from Vjj into Vj at the same age, Tj. Hence, organisms

in stage j are of age s E [Tj, Tj+i). The ages of transitions between size classes (Tj)
_(k)Sicthdeedneiclr

depend on energy density and should be written as T k). Since the dependence is clear

from the context, I do not write the superscript to simplify the formulae.

First, I generalize -yj,), the probability an individual of energy density ek grows

from stage I to stage j conditioned on survival. It is equal to the proportion of
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individuals from stage 1 that grew to stage j, but did not grow to stage j + 1:
rmin(r1+t,7j +I -(Y) (O(k) (s)ds

"yS) .- inir(7j+l,-rj-(v)

A71+1 O(k) (s)ds (4.App.C.3)

If an individual cannot grow through a stage in less than one projection interval,

(4.App.C.3) simplifies to

(k) 6j(1+1) 7 0()sds (4.App.C.4)

where 6,Y is the Kronecker 6 symbol equal to one for x y, zero otherwise.

Generalizing (4.21) gives the survivorship in stage 1:

(k)1 -( O(k) sd
( (k,) = /A(k) fI+ _( (4.App.C.5), jJ'7+1 O(k)(S)ds ,

and generalizing (4.22) gives the average individual commitment of energy to repro-

duction: Tj +1 0(k) djo(k) (S) <••d
AftOk) - ___(4.App.C.6)

.fo

The flux of energy to reproduction, d/o(k) (s)/ds, can be calculated from equations

(4.3)-(4.5) for e = ek.

An individual committing A/31 energy to reproduction produces a number of

newborns equal to the ratio of the energy committed to reproduction and CN, the

cost of the newborn (see equation 4.23):

N -O(k)

N(k) (4.App.C.7)
CN

Finally, the fecundity of size class V, and energy density class ej is the number of

newborns at time t + a per adult at time t that survived to time t + a (see equation

4.25):

F(k) ( (k) N(k) (4.App.C.8)
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Then, R(k) is

(1 - Z(k),)(k) J

(k) (k) (k)

R( (k) 01 (k j (4.App.C.9)
-j( FI(k) (k) j

0 otherwise

4.10.2 Transitions between energy classes, Q({)(f)

Here I calculate the changes in energy density assuming constant size between t and

t + ct. The transition between energy classes depends on f and the volume of the

individual at time t (VI). I calculate the transition probability assuming all individuals

in size class V, have the same volume, V,* which is the average volume in the size

class weighted by Ok(S), the stable age distribution for energy density Ck:

* f,+l V(S) (s)ds (4.App.C.10)
fI., ¢(k)(s)ds

where TI and r1 +l are the ages of transitions between size classes that depend on ek.

From 4.1, the rate of change of energy density of an individual of size V1* is:
de Id v (f - e) (V,*)-3 (4.App.C.11)

ds

Solving (4.App.C.11) gives the energy density of an individual of volume V,* and

energy intake f at time t + a assuming the individual had energy density Ck at time

t: )(. p . .2

e(-'(f) = f - (f - ek) exp (4.App.C.12)

where

T(I)(V*) = (V.*) 3 (4.App.C.13)
V

Let the new energy density e(')(f) of an individual of initial energy density Ck

fall between energy densities eand e,+i. Then, I assume that individuals from stage
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ek can only go to either stage e:, or e,+l, and that they distribute between these to

stages so that the average energy equals 0(')'(f). Hence, if q,)(f) is the fraction of

individuals from ek that transit to e, the transition probability from Ck to ci is

Q("(f) = qf(•f(f)6i. + (1 - q~x(f))6•(x~ 1 ), (4.App.C.14)

where
q()(f) + - ex (4.App.C.15)

ex+l -- x

Considering equations (4.App.C.12) and (4.App.C.13) suggests that larger individu-

als respond slower to changes in energy availability, and species with larger energy

conductivity (larger v) respond faster.

4.10.3 Calculating the projection matrix

The transition probability from energy density ek and size V, to energy density c,

and size Vj is the product of the transition probability between size classes and the

transition probability between energy classes (see (4.App.C.1)). It is, however, a

tensor of the fourth rank, and cannot be used as the matrix population models which

are of the form

n(t + 1) = An(t), (4.App.C.16)

where n(t) is the population vector and A is the projection matrix with two dimien-

sions. If there are in size and n energy density classes, the number of individuals of

size V, and energy density ek is stored in the position mr(k - 1) + I of the population

vector.

Rearranging Pijkl in a similar fashion gives the projection matrix A:

A(m(i• )+j) (rn(k-1)+l)(f)=Pijkl(f). (4.App.C. 17)

The projection matrix has dimensions of mn, and the dominant eigenvalue of A gives

the population growth rate.
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4.10.4 Preliminary results

I simulated environmental variability by varying energy availability on temporal scales

longer (interannual) and shorter (seasonal) than one year. In both cases, I simulated

a periodic environment, with periods of one projection interval for seasonal, and

multiple projection intervals for interannual variability. The analysis of these two

time scales requires different approaches because the matrix model is discrete in time,

and cannot track changes on shorter time scales than the projection interval. For

simulations, I used the extended matrix model with include five energy classes that

span energy density from the minimum to the maximum simulated possible under

the considered food availabilities.

4.10.5 Seasonal variability

To simulate seasonal variability, I represented the seasonal fluctuations of energy

intake by a sinusoid with a period a. I varied the characteristics of the fluctuations

by varying the phase and the amplitude of the sinusoid (Figure 4-12):

f(t) fo +.fA sin-l ( t) , (4.App.C.18)

where fA is the amplitude of oscillations, fo = 0.5 is the average energy intake.

Assuming the newborns are born with the average energy density (e(0) = 0.5), I cal-

culated population growth rates (Figure 4-13) for the range of fA from the minimum

(constant energy intake, fA = 0) to the maximum (fA = fo) and phase from zero to

27r.

If the reproductive event happens when the food availability is increasing, the

variability in food supply can be very large without significant consequences on the

growth rate. Environmental variability reduces the growth rate, more so if the repro-

ductive event happens when the food availability is increasing.

Next, I considered the impact of development time on the ability to buffer seasonal

fluctuations. For a range of development times, I varied phase and amplitude of f
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as shown in Figure 4-13 and found the minimum growth rate. I used the minimum

growth rate as a measure of ability to buffer oscillations; the lower this minimum, the

more poorly buffered the population is.

I changed the development time by increasing the size at which individuals mature

(Vp). This decreased the population growth rate. To make comparisons of growth

rates reflect ability to buffer seasonal fluctuations rather than just the development

time, I compensated the decrease caused by the prolonged maturation time by low-

ering the aging acceleration (h•,) so that the maximum growth rates were equal for

all development times.

The minimum growth rate increases with size (and time) to maturity (Figure 4-

14), suggesting that species with longer time to maturity buffer seasonal variations

better.

Interannual variability

I simulated interannual variability by changing the amplitude and period of the

environmental fluctuations. The simulated environments had periods of 2k, where

k = 0, 1, 2, 3, 4 and 5 years, and an amplitude ranging from 0.1 to fo (Figure 4-15).

Simulations (Figure 4-16) suggest that organisms exploit interannual variability:

the population growth rate increases with both the amplitude and period of interan-

nual food intake variability. While I find it reasonable that the growth rate increases

with the period because the longer times of plenty could compensate for the longer

unfavorable times, I do not know why it should increase with variability as well. This

is something I will investigate in the future.

Discussion

Individuals store and budget energy to protect themselves from short-, as well as long-

term food variability. This protection may come at a cost in terms of reproduction

when the food is abundant. Therefore, to maximize population growth (and, pre-

sumably, fitness), the individuals need to optimize the balance between committing
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Figure 4-12: Two food intake scenarios. Both with amplitudes of oscillation 0.25.,
but with different phases: in phase with reproductive events (solid) and with a phase
shift of approx. 60 degrees (dotted).
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energy to reproduction, and storing the energy in the reserves to guard against envi-

ronmental fluctuations. How well do energy budgeting scenarios cope with seasonal

and interannual variability of energy intake?

For Mytilus edulis, the amplitude of oscillations in seasonal food availability and

the timing of reproduction can interfere to reduce the population growth rate. If the

organism reproduces just before the maximum food availability, the seasonal variabil-

ity can be slightly beneficial compared to constant food availability. However, if the

reproduction happens just before the minimum food availability, seasonal variability

has negative consequences on the population growth rate. This is in stark contrast

with the results for the right whale, where reproducing at the onset of minimum food

availability minimizes calving interval (and maximizes reproduction).

Longer time to maturity (larger size required for reproduction) mitigated the

negative effects of seasonal fluctuations. This suggests that organisms with short

development times might be more susceptible to shifts in peaks of food abundance

due to global climate change or human influence.
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Chapter 5

Conclusion

I may not have gone where I intended to go,

but I think I have ended up where I intended to be.

(Douglas Adams, writer)

This thesis introduces a number of theoretical advances, presents a tool to inves-

tigate right whale population dynamics, answers a number of questions, and raises

new ones in the process. The theoretical advances and results are summarized in the

outline of the thesis in Chapter 1, and covered in detail in Chapters 2-4. Instead of

re-listing them here, I will comment on the bigger picture emerging from my thesis,

reflect on some questions that come out of it, and suggest some possible future work

and directions.

In this thesis I investigated how food availability, toxicants in the environment

and maternal transfer of toxicants influence patterns of bioaccumulation of toxicants,

growth and reproduction of individuals, and growth rate of populations. Figure 5-1

shows the general framework I used.

I chose and developed particular instances of each of the models within the frame-

work. Using the dynamic energy budget (DEB) and pharmacokinetic models de-

scribed in Chapter 2, I investigated how food availability and variability influenced

individual growth, reproduction and patterns of bioaccumulation of toxicants. To
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Figure 5-1: Modeling framework: energy (E) and toxicants (T) from the environment
enter the dynamic energy budget (DEB) model, whose outputs are used by the phar-
macokinetic (PK) model. The outputs from the PK model (C) are interpreted by
the toxicant action (TA) model as an increase in the hazard rate (h,.) or a change in
DEB parameters (A). The population model then uses the state variables of the DEB
model and the TA model to calculate the demographic statisics such as population
growth rate. Maternal exposure - the exposure of a marine mammal during fetal
development and nursing - depends on another indivdiual (its mother) and requires
a population model for proper implementation.
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investigate demographic statistics, however, I needed a population model. I took two

approaches: individual based and a matrix population model.

In Chapter 3, I created and described in detail an individual based model (IBM)

using the model of toxic action that determines the effects of toxicants on individuals

(TA). I only considered direct effects of mortality (A = 0 in Figure 5-1). Using

the model, I was able to investigate population-level bioaccumulation patterns and

effects of toxicants on marine mammals. All parts of the IBM are intimately connected

and interact in complicated ways even though the equations governing them may be

(fairly) simple.

I have taken great care to minimize complexity and only model crucial components

of the biology. Nevertheless, the complexity of the IBM and the effort required to use

it can be daunting. Furthermore, the many simplifications and assumptions I had to

make to render the IBM manageable implies that one cannot expect the model to

yield exact quantitative predictions. If the model is neither easy to use, nor yields

reliable quantitative results, should it be used at all?

Certainly. Complexity of an approach should not be an obstacle to using it,

if it answers questions that simpler approaches cannot. Ecological models rarely

give exact quantitative predictions, but can be extremely elucidating in predicting

patterns, discovering causalities and guiding further research. What questions should

the individual model and the IBM (or parts thereof) be used for?

It could be used to create testable hypotheses. For example, is it really possible

that a second-born calf receives more toxicants than the first-born calf? To answer

this, we would preferably observe the mothers during multiple reproductive events.

This is often not practical because of longevity of marine mammals, regulations and

moral concerns. However, we can investigate the parameter space to find which species

easier to experiment on should exhibit the same phenomenon. If the predictions of

the hypothesis are confirmed by the experiment, we have a better understanding of

processes of bioaccumulation. If the experiment disproves the hypothesis, some of our
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assumptions must have been wrong; finding which one improves our understanding

of physiology.

The thesis offers more examples of questions (and answers) pertinent to the indi-

vidual model and the IBM: from bioaccumulation patterns of individuals and popu-

lations, to maternal transfer and its effect on bioaccumulation patterns, to the effects

of the environment on patterns of reproduction, growth and bioaccumulation. Many

questions, like the consequences of feeding interruptions or climate change oil right

whales or how competition for resources with humans affects marine mammals, are

yet to be answered.

Simulations of the IBM do not require pre-existing knowledge of growth, repro-

duction or bioaccumulation of individuals: the values of these variables are the result

of simulations. If we were to use a simpler model, we would either have to incor-

porate the effects of not simulated parts of the framework shown in Figure 5-1, or

ignore some of the biology. Incorporating the missing effects may require extensive

knowledge of the quantities described by the missing parts of the framework, and

the implementation may prove to be even more complicated than the IBM. Ignoring

aspects of biology is not an ideal solution either, because we may be ignoring a vital

part of biology without realizing it.

One of the most useful aspects of the IBM is its ability to point to parts of tile

model that do not significantly influence the outcome of interest and can be safely

ignored. For example, we concluded that structural blubber does not play a significant

reproductive and toxicological role in right whales if the percentage of the structural

blubber is below 5%. We also found that biotransformation of persistent toxicants

can be neglected for most purposes. Both of these conclusions allow us to simplify our

research by simplifying the IBM with the confidence that the results are still relevant

to the organism.

The complete model provides a 'background' to test the less detailed, more man-

ageable models against. For example, we tested three extreme scenarios of maternal
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transfer in Chapter 3. Results suggest that any mode of maternal transfer at most

doubles the average concentration of toxicant in the blood. If we are interested in

average concentration of a toxicant in the blood, and 50% is an acceptable error, we

can safely ignore maternal transfer and possibly construct a very simple model we

can use for subsequent analyses. The simple model may allow for more thorough

analyses of the particular effect we are interested in, and provide us with a general

insight practically unattainable with the full-blown IBM.

Therefore, the complete IBM provides a very powerful tool to investigate effects

of the environment and human actions on individuals and populations. However, it

should be used selectively and prudently because the inherent difficulties in coding

and simulating such a complex IBM may prevent us from arriving at generalities

otherwise attainable using simpler population models.

The simple and extended matrix population models presented in Chapter 4 are

simpler than the IBM. The simple matrix model is a rudimentary two-stage matrix

population model of Mytilus edulis in a constant food environment that ignores phar-

macokinetics. I used such a simple model to develop and test the concepts required

to connect the individual DEB to a more complex matrix population model. Since

the simple model does not include variable energy levels or the pharmacokinetics, it

is too simple to help investigate the interactions of food availability and exposure to

toxicants on bioaccumulation and population growth rate.

The extended matrix model, presented in the Appendix C of the Chapter 4 is the

next step towards a complete implementation of the framework in Figure 5-1 in matrix

population form. In the extended model I account for energy reserves and arbitrary

life cycles by expanding the simple matrix population model to include an arbitrary

number of size (or physiology) stages, and explicitly include energy reserves. Changes

in the toxicant concentrations could be added in a similar way using the assumption

that transitions between toxicant concentrations depend only on the current size

class, but not the transitions between size classes. The rules for transitions between
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toxicant concentrations would be different than those for transitions between energy

densities; an algorithm similar to the one used to calculate transitions between size

classes could be used.

Even without the addition of pharmacokinetics, the extended matrix population

model offers a host of research directions. For example, using the population growth

rate as a measure of the degree of success of a given energy budget in a given environ-

ment, one could compare energy budgeting strategies between species or search for

the optimum energy budgeting strategy for a given relationship between reproductive

intervals, expected life span and time scale of the environmental variability. Would

the calculated optimum strategy for Mytilus correspond to the observed strategy'?

Why do whales have such different responses to environmental fluctuations than the

Mytilus? How does the climate change factor into this?

Using the theoretical advances in this thesis, one could tackle a number of ques-

tions. How do patterns of bioaccumulation change if toxicants influence DEB para-

meters other than the hazard, as suggested by Muller and Nisbet (1997)'? How (1o

patterns of bioaccumulation change as the parameters of the DEB model change'?

How could the climate change affect the current outlook of endangered marine maui-

mals? These and other questions can be investigated using the modeling framework

in Figure 5-1.

The DEB and pharmacokinetic models presented in Chapter 2 are an integral

part of the framework. Their exact forms may change somewhat depending on the

question of interest, but their main structure will stay the same. The two demo-

graphic models, however, differ considerably and need to be chosen depending on the

particular question. Each demographic model has its strengths and weaknesses.

The IBM is very flexible and is straightforward to run once implemented. It

provides the greatest amount of detail, and information on all state variables of each

individual. Distinguishing individuals allows direct observations of individual life

histories which can then be used to calculate various quantities of interest, such
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as reproductive probability (e.g. Chapter 3). Its main disadvantages include the

necessity to do simulations to arrive at vital rates and demographic statistics, and

the long time it takes to do the simulations. The dependence of the results on the

initial conditions complicates the matters further. The large amount of detail needed

to run the model, and the huge amounts of data generated by every simulation can

blur the big picture.

The matrix population model is a fast alternative: the initial simulations of the

individual model are faster than a single simulation with the IBM, and the subsequent

simulations are extremely fast, even not necessary for most purposes. Using general

matrix population theory (Caswell 2001), one can calculate demographic statistics

directly from the population projection matrix. Also, additional stressors can easily

be added to the matrix model, thus facilitating the investigation of their effects on

populations. Even though powerful and fast, matrix population models have disad-

vantages compared to the IBM: there is a considerable loss of detail, the numerous

approximations needed to formulate the matrix model reduce its predictive ability,

and grouping of individuals into classes precludes tracking of individual life histories.

The method for estimating the transition probabilities is quite complicated, which

reduces the usability of the matrix model.

In general, the IBM may be more appropriate when considering a particular species

(a narrow range of parameters) and particular scenarios, or when detailed predictions

are necessary. The matrix population model may be more suited for generalizations,

when investigating a wide range of parameters, or when multiple simulations are

necessary. Ultimately, the end does justify the means: the question at hand, available

expertise and resources, as well as preferences of the scientist determine which model

is more appropriate.
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